
)

PREFACE

This manual is a reference for all implementations of GW-BASIC*
working on the operating system (MS-DOS*) of Canon AS-100 systems.

The manual is divided into three chapters plus some appendices.

Chapter 1 covers a variety of topics when you will need
to know before you actually start programming. Much of
the information pertains to data representation when using
GW-BASIC.

Chapter 2 contains the syntax and semantics of every
command and statement in GW-BASIC, ordered alphabetically.

Chapter 3 contains the syntax and semantics of every func
tion and variable in GW-BASIC, ordered alphabetically.

The appendices contain other useful information, such as a
list of error messages and codes, summary of GW-BASIC
compiler, ASCII character code table, and hard copy.

COPYRIGHT ~ by Microsoft, 1982, all rights reserved.

*MS-DOS and GW-BASIC are registered trademarks of Microsoft, Inc.

- i -

c

c

CONTENTS

CHAPTER 1 GENERAL INFORMATION ABOUT GW-BASIC
1. 1 Acti va ting GW-BAS IC • . 1

1.1.1 System Disk Generation 1

1.1.2 Keyboard Configuration . • . 6

1.1. 3 Activating GW-BASIC 13

1.1.4 Usable Characters•........ 15

1.2 Programming in GW-BASIC•...... 19

1.2.1 Foundation of Programming •.....•...........• 19

1.2.2 Programming Preparation•........•... 21

1.2.3 Program Execution and Debugging•....... 27

1.2.4 Preservation and Reuse of Program 30

1.3 Constant and Variable•...........•........ 31

1. 3.1 Constant

1.3.2 Variable

· . 31

• 3 3

1.3.3 Array 35

1.3.4 Type Declaration and Type Conversion of

Varaible . 38

1.4 Expression and Operators . 41

1.4.1 Expression 41

1.4.2 Arithmetic Operators ••.•...•...•.......... . . 42

1.4.3 Re1ationa10perators .•.•.................... 43

1.4.4 Logica10perators •........•.........•..•.... 43

1.4.5 Operation of Character String 48

1.4.6 Function • 4 9

- iii -

1.5 Data Input/Output .•..•.......•...•....•..•....•.•.

1.5.1 Assignment statement .
1.5.2 Output Statement

1.5. 3 Input Statement

1.6 Program Execution Control .
1.6.1

1.6.2

GO TO Statement

IF· .. THEN· .. ELSE

.
Statement-

1.6.3 FOR···NEXT Statement•..•........•.••

1. 6.4 GOSUB··· RETURN Statement· .. ·•............

1. 6. 5 ON··· GOTO/ON ... GOSUB Statement· .•.........•..•

1.7 File Handling .
1.7.1 Files .
1.7.2 File Descriptor .
1.7.3 Program File .
1.7.4 Handling of Data Files

1.8 Graphics ..
1.8.1 Coordinates .
1.8.2 Palettes and Color Specification•......

1.8.3 I/O Operation of Graphic Pattern on Screen •••

1.9 Machine Language Subroutines

1.9.1 Address Generation

1.9.2 Load and Save of Machine Language

Subroutine .
1.9.3 Storage Method of Variables

1.9.4 Caution concerning Machine Language

Subroutine .

- iv -

53

53

54

58

61

61

61

62

63

64

65

65

65

68

70

81

81

82

87

89

89

90

91

93

(

(1.9.5 USR Function 94

(Calling Machine Language Subroutine~l)

1.9.6 CALL Statement 95

(Calling Machine Language Subroutine-2)

1.1 0 Others . 97

1.10.1 RS232C Communication Ports 97

1.10.2 Error Processing•..... 98

CHAPTER 2 GW-BASIC COMMANDS AND STATEMENTS

2.1

2.2

2.3

2.4

2.5

2.6

AUTO ..•....•.•••••. 104

BEEP•.... 104

BLOAD 105

BSAVE•.... 106

CALL . . • • 107

CHAIN•..... 108

2. 7 CIRCLE 110

2.8 CLEAR•.... III

2.9 CLOSE•..•..... 112

2 • 10 CL S 113

2.11 COLOR 113

2.12 COM(n)•.•.•... 115

2.13 COMMON············· 116

2.14 CONT 117

2.15

2.16

2.17

DATA• 117

DE~ ~N •. 118

DE~ -INT,

-SNG, -DBL, -STR •.• 119

- v -

2.18 DE~ SEG 120

2.19 DE~ USR 121

2.20 DELETE•... 121

2 • 21 DIM 122

2.22 DRAW•.....••. 123

2.23 EDIT 125

2 • 2 4 END 12 5

2.25 ERASE•... 126

2.26 -ERROR 126

2.27 ~IELD 128

2.28 ~ILES 129

2.29 ~OR···NEXT 130

2.30 GET (~iles) 131

2.31 GET (Graphics) 132

2.32

2.33

2.34

GOSUB •.. RETURN ..•. 134

GOTO • 135

I~···THEN···ELSE,

I~ ... GOTO ... ELSE .. 135

2.35 INPUT · 137 2.60 OPTION BASE 162 (
2.36 INPUT# · 138 2.61 OUT 162

2.37 KEY · 139 2.62 PAINT · 162

2.38 KEY(n) · 141 2.63 PALETTE,

2.39 KILL · 143 PALETTE USING · 163

2.40 LET · 143 2.64 PLAY · 166

2.41 LINE · 144 2.65 POKE · 167

2.42 LINE INPUT 146 2.66 PRESET · 168

2.43 LINE INPUT# 146 2.67 PRINT · 169

2.44 LIST · 147 2.68 PRINT USING 171

2.45 LLIST · 148 2.69 PRINT# ,

2.46 LOAD · 149 PRINT# USING · 174

2.47 LOCATE 150 2.70 PSET · 176

2.48 LPRINT, 2.71 PUT (Files) 177

LPRINT USING 150 2.72 PUT (Graphics) · 178

2.49 LSET, RSET · 151 2.73 RANDOMIZE 182

2.50 MERGE · 151 2.74 READ · 183

2.51 MID$ · 152 2.75 ·REM 184

2.52 NAME · 153 2.76 RENUM · 185

2.53 NEW · 153 2.77 RESET · 186

2.54 ON COM(n) GOSUB 153 2.78 RESTORE 186

2.55 ON ERROR GO TO 155 2.79 RESUME · 186

2.56 ON·.·GOSUB, 2.80 RETURN · 187

ON···GOTO · 155 2.81 RUN 188

2.57 ON KEY(n) GOSUB 156 2.82 SAVE · 189

2.58 OPEN · 157 2.83 SOUND · 190

2.59 OPEN "COM · 160 2.84 STOP · 190

- vi -

(, 2.85 SWAP · 191 2.89 WHILE .•• WEND 193

2.86 SYSTEM 191 2.90 WIDTH · 194

2.87 TRON, TROFF 192 2.91 WRITE · 195

2.88 WAIT · 192 2.92 WRITE# · 196

CHAPTER 3 GW-BASIC FUNCTIONS AND VARIABLES

3.1 ABS · 198 3.21 INSTR · 209

3.2 ASC · 198 3.22 INT 209

3.3 ATN · 198 3.23 LEFT$ · 210

3.4 CDBL · 199 3.24 LEN · 210

3.5 CHR$ · 199 3.25 LOC · 210

3.6 CINT · 200 3.26 LOF · 211

3.7 COS · 200 3.27 LOG · 211

3.8 CSNG 201 3.28 LPOS · 212

3.9 CSRLIN 201 3.29 MID$ · 212

3.10 CVI, CVS, CVD 202 3.30 MKI$, MKS$, MKD$.. 213

3.11 DATE $ · 203 3.31 OCT$ · 213

3.12 EOF 204 3.32 PEEK · 214

3.13 ERR, ERL 204 3.33 POINT · 214

3.14 EXP · 205 3.34 POS · 214

3.15 FIX · 206 3.35 RIGHT$ · 215

3.16 FRE · 206 3.36 RND · 215

3.17 HEX$ 207 3.37 SCREEN · 216

3.18 INKEY$ 207 3.38 SGN · 217

3.19 INP · 207 3.39 SIN · 217

3.20 INPUT$ 208 3.40 SPACE$ 217
(

- vii -

3.41 SPC 218 3.46 TAN · 220

3.42 SQR 218 3.47 TIME$ 221 C
3.43 STR$ 219 3.48 USR · 222

3.44 STRING$ 219 3.49 VAL · 223

3.45 TAB 220 3.50 VARPTR 223

Appendix A. Summary of Error Messages and Codes 227

Appendix B. Summary of GW-BASIC Compiler 235

Appendix C. ASCII Character Code Table 248

Appendix D. Hard Copy . 249 ·

/

- viii -

CHAPTER 1

GENERAL INFORMATION ABOUT GW-BASIC

1.1 Activating GW-BASIC

1.1.1 System Disk Generation
To make use of GW-BASIC, it is necessary in the first place to
generate a system disk for GW-BASIC from the original disk of
MS-DOS and GW-BASIC.

The generation of a system disk for GW-BASIC (hereinafter .
referred to as system disk) is realized by copying all the
system programs of MS-DOS all the modules of GW-BASIC into
a new disk in which nothing is written.

Fig. 1.1 System Disk Generation

Original Disk Original Disk

MS-DOS GW-BASIC

o
o D

System Disk

GW-BASIC

o
o

o
o

Generate a system disk by the following operations.

(1) Disk formatting for a system disk.

(2) Volume copy of the MS-DOS original disk.

(3) Copy GW-BASIC modules.

If an error occurs during operation, see the MS-DOS User's
Manual.

- 1 -

(1) Disk Formatting

The formatting is required for a disk in which nothing is writ
ten, prior to use. This formatting is required for newly pur
chased disk (excluding the one in which software is stored)
prior to use in AS-lOO.

The formatting consists of checking a fresh unused disk and
dividing the disk into sections in a form so predetermined that
it is allowed to read from and write into this disk in AS-lOO.
For this disk formatting, the FOru·~T command is used.

The operating procedure of the disk formatting is as follows:

1) Set the MS-DOS original disk in drive A.

2) In case the 8-inch floppy disk is used, turn on the
power of the floppy disk unit.

3) Turn on the power of the display unit.

4) After MS-DOS is loaded, the following message will be
displayed, and the operation will be ready for the
input of the date.

Current date is xxx mm-dd-yyyy
Enter new date:

According to the format of mm-dd-yyyy, enter the date.
(mm: Month; dd: Date; yyyy: Year)

Example: Enter new date: [Q] [lJ B IQ] rn B [] ~ lID ill GTI

In the above example,
carriare return key.
IENTER can be used.

Q] indicates the
Instead of Q]

5) The following message will be displayed, and the opera
tion will be ready for the input of the time:

Current time is hh:mm:ss.ss
Enter new time:

According to the format of hh:mm:ss.ss, enter the time.
(hh: Hour; mm: Minute; ss.ss: Second)

Example: Enter new time: [] [ill [;J rn [QJ [;J IQ] [Q] GJ IQ] IQ] ~

- 2 -

c

c 6) When itA> _It is displayed, enter ~ [Q] [RJ INlIAl ~ ~ rn:J [;] ~

(bI indicates the space bar.)

7) The following message will be displayed:

8)

9)

10)

Diskette formatter Vx.xx

Insert new diskette for drive B:
and strike any key when ready

set a disk to be formatted in Drive B.

strike any~ whatever.
Here, if ~ + I£] ([g is depressed while I CTRL I
is being depressed) is entered, the operation will
return to the display of It A > It without execution of
disk formatting.

When disk formatting normally comes to an end, the
following message will be displayed, and the opera
tion will be ready for a key input.

xxxxxx bytes total disk space
xxxxxx bytes available on disk

Format another (Y/N)?_

Here, enter lliJ GIl •
display of It A > _It •

The operation will return to the

Note: Do not open the doors of the disk drives abso
lutely during execution of disk formatting.
For disk formatting for any purpose other than
system disk generation, use the generated GW
BASIC system disk instead of the MS-DOS original
disk.

(2) volume Copy of MS-DOS Original Disk

The volume copy referrs to copying a disk. Here, the MS-DOS
original disk is copied. For the volume copy of the MS-DOS
original disk, the DISKCOPY command is used.

The operating procedure of the volume copy is as Shown on the
next page:

- 3 -

I} Continued from the disk formatting described in the
preceding paragraph.

Drive A
Drive B
Display ...

MS-DOS original disk
Formatted disk
A>

3) The following message will be displayed, and the opera
tion will be ready for a key input:

Diskette copy Vx.x (C) CANON Inc.

Buffer size: xxx K Bytes *2

Insert source diskette for drive A:
& insert target diskette for drive B:
and strike any key when ready

4} Strike any key whatever.
Here, when ICTRLI + [g is entered, the operation will
return to the display of "A> II without execution of
volume copy.

5} When volume copy normally comes to an end, the follow
ing message will be displayed, and the operation will
be ready for a key input:

Copy another disk (Y/N)?_

Here, enter lliJ GD .
display of II A > _" ~

The operation will return to the

Note: It takes 2 minutes and 30 seconds for the
volume copy of the MS-DOS original disk. Do
not open the doors of the disk drives absolutely
during execution of volume copy. In addition
to this, the DISKCOPY command cannot be used
between disks of different sizes (namely, be
tween a 5-inch mini-floppy disk and an 8-inch
floppy disk).

(3) Copying GW-BASIC modules

Then, transfer all the modules of GW-BASIC to that copy of the
MS-DOS original disk which was prepared in the preceding
paragraph.

- 4 -

(

c Unlike the volume copy described in the preceding paragraph,
the COpy command is used for this work to transfer all the
modules of GW-BASIC to the MS-DOS system disk.

The operating procedure of the copying of GW-BASIC modules is
as follows:

1) Continued from the volume copy described in the
preceding paragraph.

Drive A
Drive B
Display

MS-DOS original disk
MS-DOS system disk
A>_

2) Take the MS-DOS original disk out of Drive A, and
set the GW-BASIC original disk instead.

4) When the copying normally comes to an end, "A> "will
be displayed.

5) Thus, the entire work of system disk generation has
been completed, and the disk set in Drive B will be
used as the GW-BASIC system disk.

Note: Do not open the doors of the disk drives
absolutely during execution of copying.

- 5 -

1.1.2 Keyboard Configuration
The keyboard of AS-IOO is configurated of a typewriter keys,
a ten-key numeric entry pad and a function keys, as shown in the
figure below.

Fig. 1.2 Keyboard Configuration

Function keys

Typewriter keys Ten-key numeric
entry pad

(1) Typewriter Keys

The character engraved on each key top is entered in accordance
with the condition of the key to select the following input mode:

(Alphabet lock key): In the ON state, it turns the
keyboard into the alphabet lock mode.
The ON state is changed over to/from
the OFF state every time the key is
once depressed.

~(Shift key):

In the ON state, the lamp inside the
key lights up, and in the OFF state,
it goes out.

When the key is depressed, the keyboard
is turned into the shift mode.

a. Normal mode ••• When the alphabet lock key is in the
OFF state and in the state where a

- 6 -

c

shift key is not depressed, alphabeti
cal lower-case characters, numerical
characters and symbols can be entered.

Example: CJ =*> 1

b. Alphabet lock mode ••• Alphabetical upper-case charac
ters, numerical characters and symbols
can be entered.

E 1 mll""::""l xamp e: W ""7'

c. Shift mode •••• Alphabetical upper-case characters
and symbols can be entered.

mIl....::.... Example: W ""7' II] =*> +

(2) Ten-key Numeric Entry Pad

In the ten-key numeric entry pad, the entry of numeric values
as well as the cursor control can be carried out.

~
~

(Delete line key): It deletes one entered line and
returns the cursor to the top of
the line.

(Numeric key) :

(Two-zero key)

It allows to enter a numeric of 0
through 9. In the cursor control
mode, in addition, it provides the
cursor control function.

The entry same as that by depress
ing the [QJ key two times is
carried out.

(Decimal point key): It enters a deciman point.

(Minus key) It enters the minus sign.

- 7 -

m (Enter key) It is depressed to bring entry to
an end. The execution of each
command is started by the input of
this key. It is provided with the
function same as the carriage
return key in the typewriter keys.

(Cursor lock key): In the ON state, it turns the
numeric key into the cursor con
trol mode. The ON state is
changed over to/from the OFF state
every time the key is once de
pressed. In the ON state the lamp
inside the key lights up, and in
the OFF state it goes out.

In the cursor control mode, the
cursor moves by one character to
the direction indicated by any of"
the arrows at the II] , LIl , IT]
and DO key tops. In addition to
this, when the IH~4 key is depressed,
the cursor will move to the home
position.

(3) Function Keys

The function keys consist of twelve keys: FI through F12. The
user can define the contents of the keys by using KEY statement.
When GW-BASIC is in activity, the contents of the twelve keys
are defined as shown in the table below.

Key Defined keyword Key Defined keyword

[IT] LIST ~ [ill TRON ~

[f[] RUN Q] [ill TROFF !dl -

[ill LOAD" [ill LLIST L-I

[ill SAVE" IFIOI EDIT~

c:ru CONT QJ IFIll FILES Gil

0J , "LPTI:" ~ IFl21 CHR$(

- 8 -

(

c (4) Special Keys

The description of the functions of special keys are given
below:

(Cancel key)

(Control key)

8
(Alternate key)

(DEL key)

(Tab key)

(Line Feed key)

(Clear Screen key)

(Delete key)

It interrupts the execution of a
program or processing and turns the
operation into a state ready for a
command input.

It is used in combination with another
key. For the function in this case,
refer to page 10.

It is used in combination with another
key. For the function in this case,
refer to page 12.

It deletes one character immediat-ely
before the cursor and moves the cursor
backwords by one digit to the left,
every time it is once depressed.

It moves the cursor by eight digits to
the right.

It moves the cursor to the top of the
next line.

It clears the current display on the
screen and moves the cursor to the home
position (the left uppermost corner on
the screen)

It deletes one character in the cursor
position, and shifts the character
string followinq it by one digit to the
left.

- 9 -

(Insert key)

When it is once depressed, the operation
will be turned into the Insert mode and
the character string entered in succes
sion will be inserted in the cursor
position. When it is depressed once
more or when the cursor is moved by
using the cursor control key, the In
sert mode will be released.

• Function of ICTRLI key

Key

0

0

0

0

0

0

0

0

Operation: Depress any of the following keys while depress
ing the control key.

Function Hexa. Equivalent
code function key

It displays the lastly entered command
(within one line) • 01

It moves the cursor to the top of the [rnJ [IDJ word immediately before it. 02
(Cursol control mode)

It interrupts the execution of a program. 03

It deletes one line succeeding the cursor. 05

It moves the cursor to the top of the lrnJ rn next word. 06
(Cursor control mode)

It generates buzzer sound. 07

It deletes one character immediately be-

~ fore the cursor and moves the cursor 08
backwords by one character to the left.

It moves the cursor to the left by eight

~ characters. 09

- 10 -

(

Key Function Hexa. Equivalent
code function key

0
It moves the cursor to the top of the
next line. OA ~ FEED

0 It moves the cursor to the home position. OB ~
(Cursor control mode)

0
It clears the current display on the

~ screen and moves the cursor to the home OC
position.

0 Carriage return. 00 ~ []] ,

0
It moves the cursor to the end of the
line. OE

0
It restarts the execution of a program
that was suspended by depressing 11
ICTRLI + @J.

0
It changes over the Insert mode to/from [3 the normal mode. 12

0
It brings the execution of a program to a
iempoiary half. (Restart of execution: 13

CTRL + [[])

0
It displays the contents of the character
string defined for the function keys in 14
the lowermost line on the screen.

0
It deletes the line in which the cursor

[8 is positioned. 15

0
It deletes one word immediately after the
cursor. 17

0
It throughly deletes the display succeed-
ing the CUrsor up to right lowermost lA
corner on the screen.

- 11 -

Key Function Hexa. Equivalent
code function key

IT]
It moves the cursor to the right by one ~ character. lC

(Cursor control mode)

rn It moves the cursor to the left by one [DJ character. lD
(CUrsor control mode)

[2J It moves the cursor upwards by one m character. lE
(Cursor control mode)

D
It moves the cursor downwards by one m character. lF

(Cursor control mode)

• Keyword of IALTI key

Operation: Depress any of the following keys while de
pressing the alternate key.

Key Keyword Key Keyword

0 AUTO 0 NEXT

~ BSAVE @J OPEN

@J COLOR 0 PRINT

[EJ DELETE @] Q

~ ELSE ~ RETURN

0 FOR ~ SCREEN

@] GOTO [!J THEN

0 HEX$ @] USING

[] INPUT ~ VAL

0 J 0 WIDTH

0 KEY 0 XOR

~ LOCATE 0 Y

~ MERGE 0 Z

- 12 -

(

c (5) Repeat Function and Click Sound

The keys for character input and numeric input as well as the
cursor control key are entered in succession by continuously
depressing them. This is referred to as Repeat function.
Moreover, when each key is depressed, a click sound is generat
ed, so that it can be acqustically confirmed that the key has
been depressed.

(6) Leading Input Function

The leading input function refers to the function of receiving
key input in advance even in a state where the characters entered
from the keyboard have not yet displayed on the screen. Thus
for instance, it is possible to enter the next instruction from
the keyboard even while the CPU is executing a certain program.
However, when I CANCEL I or ICTRLL + [Q] is entered, the contents
of the leading input that have een made so far will be can- .
celled.

However, if it is tried to perform leading input while a periph
eral unit is in operation, the leading input will not normally
be performed from time to time, so care should be exercised.

1.1.3 Activating GW-BASIC

GW-BASIC is activated by the following procedure:

1) Set the GW-BASIC system disk in Drive A.

2) In case the 8-inch floppy disk is used, turn on the power
of the floppy disk unit.

3) Turn on the power of the display unit.

4) After MS-DOS is loaded, the following message will be
displayed, and the operation will be ready for the
input of the date.

Current date xxx mm-dd-yyy
Enter new date:

According to the format of mm-dd-yyyy, enter the date.
(mm: Month; dd: Date; yyyy: Year)

- 13 -

5) The following message will be displayed, and the
operation will be ready for the input of the time.

Current time is hh:mm:ss.ss
Enter new time:

According to the format of hh:mm:ss.ss, etner the time.
(hh: Hour; mm: Minute; ss.ss: Second)

6) The following message will be displayed, and the
operation will be ready for the input of a command.

Canon AS-100 MS-DOS Version x.xx
COPYRIGHT (C) by Microsoft 1982, all rights
reversed

BIOS (A) Vx.xx by Canon Inc.

7) Enter @] [E] @] lliJ lli] III [£] g .
8) GW-BASIC will be loaded, and the following message will

be displayed.

Canon Personal Computer
Advanced BASIC-86 Version x.x
(C) Canon, Microsoft 1982
Created: mm-dd-yy
xxxxxx Bytes free

Ok

9) In this state, thus, the activation of the GW-BASIC
system has been completed, and it is possible to enter
various kinds of commands.

- 14 -

c

c 1.1. 4 Usable Characters

(1) Character Set

The GW-BASIC character set consists of alphabetic characters,
numeric characters and special characters. These are the char
acters which GW-BASIC recognized. There are many characters
which can be printed or displayed although they have no particu
lar meaning to GW-BASIC.

The alphabetic characters in GW-BASIC are the uppercase and
lowercase letters of the alphabet.

The numeric characters in GW-BASIC are the digits 0 through 9.

The following special characters have a special meaning GW
BASIC:

Character

=
+

*
/
\

(

)

%

$

!

&

?

Name

blank

equal sign or assignment symbol

plus sign or concatenation symbol

minus sign

asterisk or mUltiplication symbol

slash or division symbol

backs lash or integer division symbol

up arrow or exponentiation symbol

left parenthesis

right parenthesis

percent

number (or pound) sign

dollar sign

exclamation point

ampersand

comma

period or decimal point

single quotation mark (apostrophe)

semicolon

colon

question mark

- 15 -

Character Name

< less than

> greater than
II double quotation mark

underline -

(2) Reserved Words

Certain words have special meaning to GW-BASIC. These words
are called reserved words. Reserved words include all GW-BASIC
commands, statements, function names, and operator names.
Reserved words may not be used as variable names. You should
always separate reserved words from data or other parts of a
GW-BASIC statement using spaces, or other special characters as
allowed by the syntax. That is, the reserved words must be
appropriately delimited so that GW-BASIC will recognize them.

The following is a list of all the reserved words in GW-BASIC.

Reserved Words

ABS AND ASC ATN AUTO

BASE BEEP BLOAD BSAVE CALL

CDBL CHAIN CHR$ CINT CIRCLE

CLEAR CLOSE CLS COLOR COM

COMMON CONT COS CSNG CSRLIN

CVD CVI CVS DATA DATE $

DEF DEFDBL DEFINT DEFSNG DEFSTR

DELETE DIM DRAW ED.IT ELSE

END EOF EQV ERASE ERL

ERR ERROR EXP FIELD FILES

FIX FNxxxx FOR FRE GET

GOSUB GOTO HEX$ IF IMP

INKEY$ INP INPUT INPUT# INPUT$

INSTR INT KEY KILL LEFT$

LEN LET LINE LIST LLIST

LOAD LOC LOCATE LOF LOG

LPOS LPRINT LSET MERGE MID$

MKD$ MKI$ MKS$ MOD MOTOR

- 16 -

(

C NAME NEW NEXT NOT OCT$

OFF ON OPEN OPTION OR

OUT PALETTE PAINT PEEK PEN

PLAY POINT POKE POS PRESET

PRINT PRINT# PSET PUT RANDOMIZE

READ ' REM RENUM RESET RESTORE

RESUME RETURN RIGHT$ RND RSET

RUN SAVE SEG SCREEN SGN

SIN SOUND SPACE $ SPC SQR

STEP STICK STOP STR$ STRIG

STRING$ SWAP SYSTEM TAB TAN

THEN TlME$ TO TROFF TRON

USING USR VAL VARPTR WAIT

WEND WHILE WIDTH WRITE WRITE#

XOR

- 17 -

c

c

1.2 Programming in GW-BASIC

1.2.1 Foundation of Programming

(1) Editor and Interpreter of GW-BASIC

GW-BASIC includes the eidtor for creating the program in the so
called BASIC language and the interpreter which interpretes and
executes the program (source program) written by the editor.

Thus, it is that this BASIC is used in such a way that the
editor is used to create a program and the interpreter is called
to execute the program, though the commands (statements) for
the editor and those for the interpreter are dealt with at the
same level in this BASIC so that there is not so distinctive
difference between them; rather it can be stated that, in this
BASIC, the functions of the editor and interpreter are elabo
rately jointed together to allow everything to be processed in
one processing system.

Although, therefore, such terms as BASIC, editor, interpreter,
statement, command, etc. are used in the following chapters,
they are to be used in the above-described sense, and it should
be noted that they are not always used under strict definition;
it is probable that sometimes the word "command" will be used to
mean the same as the word "statement" and the term of BASIC will
refer sometimes to BASIC as a program language and sometimes to
the BASIC processing system.

(2) Command and Statement

The word of command is used to mean the instruction for the com
puter. The command is divided into the direct command which is
used to command the computer to do something immediately (the
direct mode), and the indirect command which is used in such a
way that commands are written following line numbers and they
are executed in the sequence of the line numbers (the program
ming mode).

The indirect command with a line number is referred to as state
ment, and a series of statements are called program. They are,
for example, in a relation, as shown on the next page.

- 19 -

Ok
LIST ... Command

} Program
10 FOR N=l TO 10 " statement
20 PRINT N;
30 NEXT N
Ok
RUN Of Command

1 2 3 4 5 6 7 8 9 10 -Execution result
Ok

LIST is a command to output the program list. And then,
a group of statements (program) with line numbers are outputted
in accordance with the command.

RUN is a command to execute this program. And the execution
result is displayed in succession. When RUN command is given,
the computer (the BASIC interpreter) interpretes the statements
of the program from lower line numbers and executes them sequen
tially. After completion of the program execution, the opera- .
tion is again ready for the input of a command.

(3) Syntax of GW-BASIC

The basic construction of so-called statements in GW-BASIC is
as follows:

To the statements in BASIC, line numbers are always assigned.
Normally, the statements are interpreted and executed from lower
line numbers. In addition to this, the line number is used to
designate the destination of conditional jump and unconditional
jump, and moreover, the designation of the jump of a subroutine
is designated by the line number. In GW-BASIC, the flow of a
program is determined by the line number.

a. Line Format

For the line in BASIC, the format is determined as follows:

<Line No.> <Statement>: <Statement>: •.. :<Statement>

Statements are separated from one another by a colon (:). The
line containing a plural number of statements is referred to as
a line of multi-statements, though one line can contain one
statement. A statement or statements constituted of up to 254
characters, including line number, space and colon (:), can be
written in one line.

The statements in GW-BASIC is divided into two kinds: executa
ble and non-executable statements. The executable statement is
such an imperative statement as PRINT, INPUT, FOR-NEXT, etc.
On the other hand, the non-executable statement is disregarded

- 20 -

C

(
and the control skips to the next statement. In the non
executable statements, the comment statement, such as REM state
ment, to facilitate writing a program, and the statement such
as DATA statement, to store not" instructions but data.

b. Line Number

As the line number attached to the top of a statement, an integer
from 0 to 65529 is used. The BASIC interpreter executes state
ments from lower line numbers.

(4) Procedure of Programming

The procedure of programming consists of program preparation,
correction and execution. It applies not only to BASIC but also
to the whole programming in general. The preparation of a pro
gram is carried out by the editor in BASIC. In this case, if a
program with no error can be written at a time, no correction
of the program will be required. In actuality, however, that
is rarely the case. Rather, it is the correction of a program
(called debugging) that takes most time in programming. To
facilitate this debugging, the function (such as TRON, TROFF,
error message, etc.) to trace where errors (bugs) are located
is provided.

The execution of a program is carried out by the RUN command.

1.2.2 Program Preparation

(1) Editor Function of GW-BASIC

The preparation and correction of a program are carried out by
the editor. Since the editor is incorporated in BASIC, it can
be used without being aware of it in particular.

Although the text editor of MS-DOS can be used to prepare a
program in BASIC, which will be stored in a file and later be
executed by BASIC, this method is inadvisable, since the editor
of BASIC is generally more powerful and easier to use.

Any special procedure is not required to call the editor of
BASIC. When the key input of a numeric (line number) is first
made in the direct mode, a succeeding character string will be
interpreted as a BASIC statement and stored in the memory.

For example, if the key input:

10 REM CANON ~

- 21 -

(Note: Thi s means that II] , [QJ, 'Space', [B], [gJ, [B], 'Space',
[Q], ~, I:ID, @], !ill, U are entered in order. Hereinafter,
~ indicates the carriage return key.)

is made, then the editor of BASIC stores in the memory the REM
statement (which will be described in detail) of Line No. 10.

(2) Inputting Program

Try to make the key input of the following statement in the
same way:

20 REM THIS IS SAMPLE PROGRAM Cil
30 REM WRITTEN BY TOM ~

Thus, the BASIC statements of Line Nos. 10 through 30 have been
stored in the memory. The BASIC statements stored in the memory
can be listed on the screen by the LIST command.

LIST WI
The result will be as follows:

10 REM CANON
20 REM THIS IS SAMPLE PROGRAM
30 REM WRITTEN BY TOM

The program input will be easier when the AUTO command is used.

The key input:

AUTO I:]

will result in the following:

Ok
AUTO
10

Make the key input of ffi], 00, 1El, 'Space I, (g, ~, !ill,
@], ill] , ~ in the same way as the previous one.

Ok
AUTO
10 REM CANON
20

The next line number is automatically displayed, and the opera
tion is ready for the input of the next statement. In the above
case, the line number automatically increased by 10, though this
increment can be set to any number by appropriate designation,

- 22 -

c

c which will later be described in detail.

Every input in the case of the AUTO mode is interpreted as a
BASIC statement. Therefore, it should be noted that, in the
AUTO mode, direct execution of such commands as LI~RUN, etc.
is infeasible. To cancel the AUTO mode, depress ~ + ~.

(3) Full Screen Editor

In GW~BASIC, the preparation and correction of a program can
easily be carried out on the screen. This function is
referred to as full screen editor function.

Thanks to this editor function, every line displayed on CRT can
easily be changed or corrected by operating the cursor control
key or other keys.

a. Change of Character

To c,angj the character immediately before the cursor, depress
the DEL key, and one character preceding the cursor will be
deleted and the cursor will move to that position, so enter a
new character.

To change a character apart from the cursor, move the cursor to
the character to be changed, using any of ~ , GU , DO , DO
in the cursor control mode, and enter a new character.

The cursor control key in the ten-key numeric entry pad can be
used in cursor control mode.

b. Deletion of Character

After moving the cursor onto the character to be deleted, de
press the IDELETEI key, and that character will be deleted, and
the character string on the right of the cursor will shift to
the left by qne character and corne to the position of the cursor,
so as to fill in the blank. The position of the cursor will
remain in the same position as before.

The IDELI key is also used to delete the character. In this
case, the character immediately before the cursor is deleted,
and the character string on the right of the position of the
cursor shifts by one character to the left. And when there is
no character immediately before the cursor, that is, when the
cursor has corne to the left end, the characters on the right of
the position of the cursor will be deleted in the same way as
in the case of the IDELETEI key.

Thus, the function of the IDELETEI key and that of the IDELI
key differ from each other, though they appear to resemble each

- 23 -

other, so use them properly case by case.

c. Insertion of Character

Move the cursor onto the character immediately after the posi
tion in which a character is to be inserted, and then depress
the IINSERTI key; the Insert mode will be realized, and the
characters to be entered hereafter will be inserted in front of
the cursor. To release the Insert mode, depress the IINSERTI
key again, or enter either the cursor control key or the car
riage return key.

To move from the line in which character change, deletion or
insertion has been carried out to another line, enter the car
riage return key. A corrected line will not be stored in
the memory unless the carriage return key is depressed.

d. Editing Keys

The keys useful to edit are shown below. In addition to them,
there are available the keys to be used in combination with the

ICTRLI key. For further detail, refer to "1.1.2 Keyboard Con
figuration".

· To move the cursor by one word:

The input of I CTRL I + 00 will move the
ter at the tOJLof the word on the right
of ICTRLI + ~ will move the cursor to
This is useful when the cursor is to be
horizontal direction.

cursor onto the charac
in that line. The input
the left by one word.
moved widely to the

• To move the cursor to the home position:

The input of ICTRLI + ~ will move the cursor to the left up-
permost position on the screen. In this case, the display will
not be deleted.

• To delete characters from the position of the cursor to the
end of the line:

The input of ICTRLI + ~ will delete the characters from the
cursor position at that time to the end of that line. The
cursor will not move.

• To delete a line:

The input of ICTRLI + [ill will delete all the characters in the
line in which the cursor is located and move the cursor to the
top of that line. This is the deletion on the screen, which
differs from the deletion of the "line" of a BASIC program.

- 24 -

(

c

c

· To delete the characters succeeding the cursor line:

The input of I CTRL I + 00 will delete the characters from the
position in which the cursor is currently located to the right
lowermost corner on the screen.

(4) Program Editing

The method of basic edit utilizing the full screen editor will
be described by the help of examples in the following:

The statement of a BASIC program consists of a line number and
statements succeeding it. For the format, the meaning of state
ments, etc., refer to Chapter 2.

In the following, mainly the method of the actual use of the
editor will be described.

a. Commands for Program Editing

The commands in BASIC which are used for program editing are as
follows:

• AUTO Command

Every time one program line is entered, it generates the next
line number. It is used when a program is initially entered.
The operation returns to the command level by the input of
I CTRLI + IQ].

• DELETE Command

It is used to delete several successive lines at a time.

• EDIT Command

It is used for the edit by displaying required line.

• LIST Command

It displays a program list. The list display is temporarily
stopped by depressing ICTRLI + ~ , and it is restarted by
depressing ICTRLI + [Q]. Since the operation returns to a state
ready for a command input by depressing ICTRLI + ~ , the screen
edit of the list on the screen is feasible.

• NEW Command

It deletes the program and the contents of variables, which are
stored in the memory. It is used to enter a program anew.

•. RENUM Command

It is used to renumber lines • . In this case, all the line num
bers that are used in statements will be renewed automatically.

- 25 -

b. Correction of Program

The method of program correction is as follows:

Example: 100 FOR 1=1 TO 10
110 PRINT IIBASIC II
120 NEXT I

To change Line 110 in the above example to:

110 PRINT IIPERSONAL II

make a display of the list by means of the LIST command or the
EDIT command. Then, move the cursor onto the character of B,
depress keys IRJ, [ID, [R], lID, [Q], lli], [KJ, [!J, I::J
sequentially, and finally depress the ~ key. If a display
of the list is made again, it will be seen that the change has
already been done.

Then, let us insert characters into the same line, as follows:

110 PRINT IIPERSONA~ COMPUTER II

Move the cursor to the second double quotation mark (II), de
press g, [£J, [Q], !BJ, [E], [ill, 00, ~, ffi] sequentially after
depressing the \INSERT\ key, and lastly depress the Q] key.

To delete one character, use the I DELETE I and I DELI keys. To
delete the characters of PERSONAL, either move the cursor onto
the character of P and depress the \ DELETE I key successively,
or move the cursor after the character of L and depress the
I DELI key successively.

To delete one line of a BASIC program, enter

<Line No.> [:J]

and the line of that line number will be deleted.

To delete several continuous lines, use the DELETE command.
For example,

DELETE 100-700 [:J]

will delete all lines from Line No. 100 through Line No. 700.

To insert a line additionally, enter a new line number. When
lines of one and same line number are entered more than twice,
the one entered lastly will be stored in the memory.

As for the instruction words of BASIC, the trouble of entering
the full spell can be saved when the IALTI key is used.
(See 111.1. 2 Keyboard Configuration II.)

- 26 -

c

c

Moreover, the PRINT command can be entered by the key input of
question mark (?) instead of PRINT. For example, if

110 ? IICANON II Id
is entered in a program, "?" will be converted into "PRINT" in
the display of a program list.

When the ~ key is depressed only with a line number changed, the
contents of the original line will be copied in the line of a
new line number. For a long statement having contents similar
to those of a certain line, if a copy of this line is modified
instead of the detailed key input from the beginning of that
statement, the time required for its entry will be shorted.

The full screen editor has a pointer indicating the line which
is current aimed at. When the ~ key is depressed after the
input, correction, etc. of a certain line have been carried out,
the pointer moves to that line. In addition to this, when the .
LIST command is executed, the pointer will be in the line dis
played lastly.

The user can designate the line, in which this pointer is lo
cated, by a period '.' to make use of it in the LIST or EDIT
command. For example, LIST. ~ is depressed, the line which is
aimed at that time will be displayed.

1.2.3 Program Execution and Debugging

(1) RUN and CONT

The RUN command is used to command the execution of a program.
By RUN ~ , a program is executed from -the lowest line, but
when a line number is specified following RUN, the program
can be executed from any line.

Example: RUN 100 QJ

(When a program is to be executed from the Line 100)

This is used to check the operation of the part of higher line
numbers of a program. If an error is found in the midst of a
program, BASIC will stop the execution of the program and return

.to a state ready for a command input. Sometimes errors in the
part of higher line numbers of a program are to be checked, dis
regarding the errors that have already occurred, since the de
tailed correction of errors will deteriorate the efficiency of
debugging. In such ~ case, use the CONT command, as shown on
the next page:

-. 27 -

CONT ~

This command can be used not only when the execution of a pro
gram has come to a stop due to the occurrence of an error, but
also when the program is stopped by ICTRLI + [Q].

However, when the correction of a program has been carried out
even once after the execution of the program was stopped, the
CONT command cannot be used.

(2) Interruption of Program

When ICTRL I + [£J is entered during execution of a program, the
operation will be broken, a line number will be displayed, and
the control will be ready for a command input. In this case,
since the values of variables, etc. are preserved, they can be
referred to by a direct command.

By the CONT command, then, the execution can also be restarted
from a next instruction.

By inserting a STOP statement into a program, the execution can
be interrupted at the positon of that statement. Also in this
case, the control will return to a state ready for a command in
put, and the execution will be restarted from a next instruction
by the CONT command.

(3) TRON and TROFF (Trace)

The TRON instruction is used to trace the execution of a program.
Normally, it is entered as a direct command, but it can also be
used as a statement in a program.

After execution of TRON, the operation will be turned into a
Trace mode, and the line numbers of the program that have al
ready been executed will be displayed sequentially in brackets.
Therefore, though the execution will be delayed for the display
time, it will be possible to know what part of the program is
currently being executed.

Bugs are discovered by interrupting the execution by ICTRLI + [Q]
and making sure of the ¥alues of variables in the direct mode.

When the STOP statement is used at the same time, more effective
debugging may be possible. To release the Trace mode, enter the
TROFF instruction.

- 28 -

(

((4) Debugging

It is very rare that an entered program can at once operate
satisfactorily, and it is not too much to say that there are
always errors in the program. These errors are generally
referred to as bugs, and removing such bugs are called debugging.
Bugs are classified into grammatical errors, input mistakes,
mistakes of algorithm, etc., and since the BASIC interpreter
displays grammatical errors and erroneous use of instructions
as errors, they can easily be corrected as you get accustomed to
them. However, the errors of algorithm, etc. do not appear as
concrete errors.

As the methods of discovering this kind of bugs, the pre
described interruption and trace of the execution of a program
are available. These methods will be helpful to early discovery
of bugs.

(5) Error and EDIT Command

When an error occurs during execution of a program, the execu
tion will come to a stop, and an error message will be displayed.
In this case, the corresponding line can be displayed at once by
entering LIST. GD . In the same way, the EDIT command displays
that line by entering EDIT. GD and moves the cursor to the top
of the line, so screen edit can promptly be carried out. The
difference between the LIST command and the EDIT command in the
case where one line is displayed can be regarded to lie only in
the position of the cursor.

In this case, moreover, when ICTRLI + Uil is entered, the line
indicated in the error message will be displayed in the same way
as in the case where EDIT. ~ is entered.

Especially in the case of a syntax error, BASIC automatically
displays the line in which an error has been discovered, and
moves the cursor to the top of the line.

(6) Error Message

When an error occurs during execution of a program, BASIC will
display an error message and stop the execution of the program.
The values of variables, etc. will remain as they are at the
time of the interruption. Errors in the program cannot be de
tected before the execution moves to that line. Therefore, when
there are a plural number of errors in the program, the errors
in the later part cannot be detected unless either the first
error is corrected or the program is executed with the line in
cluding that error skipped.

- 29 -

The error message is displayed in the following format:

<Error message> in <Line number>

Example: Syntax error in 30

This display means that there is a syntax error in the Line 30.
For the error message, refer to "Error Messages" at the end of
this manual. (For error processing, refer to 1.10.2)

1.2.4 Preservation and Reuse of Program

Since the program is prepared by consuming much time and labor
and generally it is long, it is troublesome to enter it every
time the power switch of the computer is turned on. Therefore,
a debugged program is normally stored in a file for preservation.
Stored programs can later be called and executed, or later be
modified and improved. In addition to this, it is possible to
joint a plural number of programs together to prepare a new
program.

As the commands used for these purposes, the following are
available:

SAVE: Stores a program in a file.

LOAD: Loads a program from a file.

MERGE: Joints the program in the memory with a program
in a file.

The actual use of these commands will be described in a later
chapter.

- 30 -

c

c 1.3 constant and Variable

1. 3.1 Constant

The constant refers to a numeric value or a character string
directly used at the time of the execution of a program. Both
are distinguished from each other by referring to the constant
of the former as numeric constant and that of the latter as
character constant.

The numeric constant is classified into floating decimal point
type, integer type, etc., or from another point of view, it is
grouped according to precision into double precision type and
single precision type.

(1) Character Constant

The character string such as the following enclosed by double
quotation marks (") is referred to as character constant:

IIThank you ll

111982-7-3111

It is used mainly in PRINT statements, etc., as follows:

Ok
PRINT IIHow are yoU?1I ~
How are you?

As a character constant, a character string of a length of 0
through 254 characters is allowed. The character constant of a
length of 0 ("") is in particular referred to as null string.

(2) Types of Numeric Constant

The numeric constant is designated by +, -, period(.) and digits
of 0 through 9. In addition to this, the notation of 40E-2 to
express a power as well as the notation with % and # or in such
a form as &H2AFO to designate the type of constant is used.

a. Integer type

The range of integer type constants is from -32768 to 32767.
Outside of that range are interpreted as constants of real
number type. They can also be distinguished by adding to them
at the end the type declaration character % which designates
an integer type.

Example: 125,2742%, -64, -872%

- 31 -

• Hexadecimal constant

The constant having &H at the top means a hexadecimal integer
type constant.

Decimal
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 number

Hexadecimal
0 1 2 3 4 5 6 7 8 9 C number A B D E F

The range of hexadecimal constants is from -&HFFFF (-65535) to
&HFFFF (65535).

Example:

-
10992
-26
256

&H2AF0
-&H1A
&H100
&HFF+1 256 (255+1)

. Octal constant

The constant having &0 at the top means an octal integer type
constant.

Example: &0123 - 83
&02000 -- 1024
&01777+1 -- 1024 (1023+1)

The range of octal type constants is from -&0177777 (-65535)
to &0177777 (65535).

b. Fixed-point type

It is a real number type constant with a decimal point, and a
number from approximately 3.4xl0 39 to approximately 1.7x10 3B

•

Example: -364.7, 3682.0, 1876952.324

c. Floating-point type

It is a real number type constant of power notation, and its
range is the same as that of the fixed-point type. It is a
constant in the form that a fixed-point part is followed by E
(Exponential) and then by an exponential part: e.g. l5E-2 =
15 x 10- 2 •

Example: -365.42E10, 0.28E3, 1.2987E-7

The fixed-point part should be an integer with a fixed point,
and the exponential part should be an integer of -39 through 38.

- 32 -

c (3) Precision of Numeric Constant

The real number type constant is classified into single preci
sion type and double precision type according to the precision.
There is not such classification in the case of the integer type
(including octal numbers and hexadecimal numbers).

a. Single precision type

The real number constant whose significant digits (fixed-point
part) is less than 7 digits is regarded as single precision type,
and it is displayed up to 6 digits. The precision is guaranteed
up to 6 digits. Although it can be distinguished by adding the
type declaration character "!" which designates the single pre
cision type, the real number type constant up to 7 digits is
regarded as single precision type, even if it has not the type
declaration character.

Example: 16.427, 326.42!, 7!, 1021!

b. Double precision type

The real number type constant whose significant digits are 8
though 16 digits is regarded as double precision type. Moreover,
the constant of less than 7 digits is regarded as a double pre
cision constant by adding the type declaration character "i" at
the end. In the case of the floating-point type constant,
though the form of expression is same as that of the single pre
cision type, "D" is used instead of "E" in the exponential part.

Example: 10#, 21.628763521, 116.421 #

The symbol "i" is used in the following cases:

1. 3.2

PRINT 10/7 G!l
1.42857
PRINT 10#/7 Q]
1.428571428571429

Variable

(Single precision)

(Double precision)

The variable is used to preserve values during the processing of
data in the flow of a program. It can be said that the variable
is a specific location in the memory to accommodate the values
used in a program. And what is used to identify that specific
location is a variable name.

- 33 -

(1) Rule of Variable Name

The variable names that can be used in GW-BASIC is restricted as
follows:

1) The top should be an alphabetic character. The characters
from the second can be any of alphabetic characters and numeric
characters. No space should be inserted in the midst.

2) The variable name should be within 40 characters.

3) The same as reserved words (key words such as commands,
statements, etc.) are not allowed. For example, the variable
name such as GOTO or IF is not allowed.

4) A type declaration character can be attached to the end of
a variable name. (It can be omitted.) A type declaration
character (#, %, !, $) sbould not be situated at the top or in
the midst of a variable name.

Examples of correct variable names:

ABC
DSCC2
E15

Examples of erroneous variable names:

lDATA
DA#SC
GOTO

Beginning with a numeric character.
A type declaration character used in the midst.
Same name as one of the reserved words.
(GO is allowed.)

(2) Type of Variable

Variables are classified into several types in the same way as
in the case of constants. They are classified in the first
place into numeric variables and character variables, and the
numeric variables are further classified into integer type,
single precision type and double precision type.

As the character indicating the type of a variable, the type
declaration characters same as those for constants are used,
and a type declaration character such as %, !, #, and $ is
added to a variable name at the end. It is used as follows:
A$, BCD!, D%.

The type declaration character is a symbol which designates to
what type the variable belongs.

- 34 -

c

c Type Amount of
Significant Type declaration memory

digits
Example

character used

Integer % 2 bytes
-32768 A%

'V 32767 ABC%

Numeric Single
4 bytes 6 digits

B!
!

value precision TEST!

Double
8 bytes 16 digits

C#
precision XYZ#

Character
Character $

a 'V 255 D$
value bytes LMN$

The variable having no type declaration character in particular
(such as ABC, ESCAP, etc.) is interpreted as a numeric variable
of single precision type.

In the table given above, the amount of memory used is the num
ber of bytes secured to store data in a variable. Another
memory is required to identify the variable name. Therefore,
if a long variable name is used, the program size will be in
creased.

1.3.3 Array

(1) Array

A group of variables can be ordered. As for variable name A,
for example, the variable can be divided into A(O), A(l), A(2),

Here, A(O) and A(l) can be dealt with as independent
variables. Ordering a group of variables in this way is
referred to as "setting in array".

To consider what merits are brought about by setting in array,
assume the following three sample programs as shown on the next
page.

Note: DIM is a statement declaring the size of array
in advance.

- 35 -

Sample 1:

10 READ A0, Al, A2, A3, A4
20 PRINT A0, Al, A2, A3, A4
30 DATA 26, 33, 15, 22, 47
RUN

26 33 1 5 22
Ok

Sample 2:

Hl DIM A(4)

47

20 READ A(0), A(l), A(2), A(3), A(4)
30 PRINT A(0), A(l), A(2), A(3), A(4)
40 DATA 26, 33, 15, 22, 47
RUN

26 33
Ok

Sample 3:

10 DIM A(4)
20 FOR 1=0 TO 4
30 READ A(I)
40 PRINT A(I),
50 NEXT I

1 5

60 DATA 25, 33, 15, 22, 47
RUN

26 33 15
Ok

22 47

22 47

Sample 1 is an example in which varaible AO through A4 are used
in an ordinary way. If the same program is written by making
use of array, Sample 2 can be obtained. In these two programs,
if the number of variables is to be increased, for example, to
20, the following troublesome change will be required:

10 READ A0, Al, ... , A20
20 PRINT A0, Al, ... , A20

On the other hand, if a FOR - NEXT loop is used as in the case
of Sample 3, an extremely compact program can be written.

The method of giving an array name is same as in the case of
variables. In addition to this, arrays are divided into types,
and the same type declaration characters as those for variables
are used.

The variable set in array has the following format:

ABC(15)

A~ray ~SUbscriPt

- 36 -

c

c when 15 is designated as a subscript, as shown in the above
example, there should be at least 16 arrays of ABC (0) through
ABC(15). If the OPTION BASE instruction is used, the first
array can be ABC(l) instead of ABC(O).

Ok
OPTION BASE 1 ~

In this way, the array subscript will start from 1. If it is
required to restore the array subscript so as to start from 0,
write the following:

Ok
CLEAR ~

(2) Multi-dimensional Array

Although the array described in the preceding paragraph was
one-dimensional array, array can have any dimensions. The
two-dimensional array can be ordered from the front and from
the left. Further, the three-dimensional array can be ordered
from the top in addition.

One-dimensional
array

~

Two-dimensional
Array

Three~dimensional

array

Any number of dimensions of array can be allowed so far as the
space of the memory admits, however high it may be.

(3) Array Declaration, Implicit Declaration and Memory Capacity

To use a variable to be set in array, the array should be first
declared in principle. A few examples of the declaration of
array are given below:

One-dimensional array
Two-dimensional array
Three-dimensional array

DIM A(5), B(10)
DIM A(10, 10), B(5, 20)
DIM A(25, 25, 25), B(6, 18, 23)

- 37 -

When array is declared, the BASIC processing system secures the (
amount of memory corresponding to the number of that array.
For A(9, 9), 10xlO namely 100 real number variables of single
precision type are secured. They correspond to 400 bytes since
4 bytes are secured per real number variables of single precision
type. In the same way, for A(9, 9, 9), the memory of 10xlOxlOx4
~ 4 K bytes is secured. When high-dimensional array is used,
attention should be paid to the memory capacity.

In the examples given above, the array only of the variable of
single precision type was dealt with, but character type,
integer type, double precision type, etc. can be set in array.

Example: A$(10), BOS%(20, 20), BAS#(5, 5, 5), CO!(20, 20)

To set in array, the array is in principle declared by the DIM
statement, but in the case of subscripts of less than 10, array
can be used without declaration. This implicit declaration of
array can be admitted as to any dimensions if subscripts are less
than 10.

It should be noted as to implicit declaration that, even if
only one variable is used in such a form as A(9, 9, 9), the
memory space (approximately 4 K bytes) for 1,000 variables will
be secured automatidally. Therefore, when high-dimensional ar
ray is to be used, it is recommended to declare by the DIM
statement even if subscripts are less than 10.

1.3.4 Type Declaration and Type Conversion of Variable

In BASIC, the type declaration of the variable or array is auto
matically carried out when a variable name is given to it. As
can be suspected from the description up to the preceding sec
tion, the type declaration has been carried out automatically
by attaching a type declaration character to that variable name
when the variable was first used.

When no type declaration character is attached in particular,
the variable is regarded as a variable of single precision type.
Therefore, even if you are not aware of the fact that type
declaration is carried out, the type declaration of single pre
cision type will be carried out automatically.

To convert the type of a variable which has once been declared
(a variable which has once been used) into another type, an as
signment statement and a new variable name are used.

Example: C%=C

- 38 -

c Thus, the value of C will be rounded up and the integer part
will be stored in C%. Subsequently, if C% is used, operation
can be performed in the integer type. In addition to this,
since the content of C remains as it is, care should be exer
cised so that C and C% may not be confused if the type conver
sion has been carried out as described above. The GW-BASIC
interpreter interpretes C and C% as independent variables.
Although few problems are posed when the integer type is sub
stituted for the single precision type, it should be noted that
sometimes sufficient precision cannot be obtained when the sin
gle precision type is converted into the double precision type
and round-up is performed when the double precision type is
converted into the single precision type.

Another method is available for the declaration of the type of
a variable. The type declaration for the capital letter of a
variable name can be carried out by declaration statements such
as the DEFINT statement, DEFSNG statement, DEFDBL statement,
DEFSTR statement. For further details of these declaration
statements, refer to Chapter 2.

- 39 -

(

c

(

1.4 Expression and Operators

1.4.1 Expression

The expression is constituted of constants, variables, operators,
functions, etc. in combination. The expression is used mainly
in the assignment statement, IF statement and PRINT statement.

Example: A = SIN(2) + 1

PRINT AlB

IF A$="Y" THEN 1000 ELSE 15Q)(D

The expression is classified into two kinds: the expression
for the operation of numerical values, and that for the opera
tion of characters. These two kinds of expressions should be
distinguished when they are used. It is not allowed that char
acter variables are confused with numeric variables nor that
numeric operators are used for character variables.

Erroneous examples:

A+B+C$+l .••.. Numeric operation is confused with
character operation.

B$+VAL(C$)···· VAL (C$) is a numeric function.

SQR(A$)······· The argument of the SQR function
should be a numeric value.

The value of an expression is evaluated from the left to the
right, and there is the following rule o~ priority.

1. Expression enclosed by parentheses.
2. Functions
3. Arithmetic operators (Addition, subtra ction, multipli

cation, division, etc.)
4. Relational operation (Comparison of expression with

each other)
5. Logical operation (Evaluation of the result of com

parison)

Although operators and functions are mathematically equivalent,
the computer distinguishes them from each other. The function
has an operand (enclosed by parentheses) following a function
name, while the operator is situated either between two operands
or in front of one term. Since the operator is a reserved word,
the symbols of operators (+, -, I, *, ••.) cannot be used in a
variable name.

- 41 -

1.4.2 Arithmetic Operators

The arithmetic operator is an operator used to perform the addi
tion, subtraction, multiplication, division, etc. of numeric
values, and the following arithmetic operators are provided in
GW-BASIC:

Operator Contents of operation Example Priority

1\ Exponentiation BI\2 CD
+, - Signs -2+B, B*-2 @

* I
Multiplication, Floating

A*C, A/C ® , Point Division

"- Integer Division AB"'.C @
MOD Modulo Arithmetic A MOD B ®

+, - Addition, Subtraction A+B, A-B @

The rule of the priority of signs is somewhat complicated, so
let us describe by the help of examples.

Example: - A*-B*C
- A"-3*B

When * or I is followed by + or - (normally, -), these + and -
are interpreted as signs and have high priorities than those of
* and I, as described in the above examples. In such a case,
moreover, they have sometimes high priority than" (exponentia
tion), as described above.

When the operator MOD is used, space~ should be positioned
before and behind MOD.

Erroneous use: ?14MOD5
14 0

?14 MOD5
14 0

Correct use: ?14 MODw5
4

MOD is an operator which returns a remainder or the residual of
division.

The operator (\) performs division by rounding down the digits
below the decimal point of the terms before and behind it, and
further rounds down the digits below the decimal point of that
result.

- 42 -

c ?27.45'-.4.62 27.45 / 4.62 ¢ 27 / 4 9 6

Truncation Truncation

1.4.3 Relational Operators

The relational operator compares numeric values as well as char
acter strings. The result will be -1 if the result of operation
is true, and 0 if it is false. The kinds of relational opera
tors are as follows:

Operator Relation Tested Example

= Equality X=Y (X is equal to Y)

<>, >< Inequality X<>Y,X><Y (X is not equal to Y)

< Less than X<Y (X is less than Y)

> Greater than X>Y (X is greater than Y)

<=, =< Less than or equal to X<=Y,X=<Y (X is equal to Y or
less than Y)

>=, => Greater than or equal X>=Y,X=>Y (X is equal to Y or
to greater than Y)

The expression containing relational opeators is used in the IF
statement and an expression containing logical operators.

Example: ? 12>8, 1 (1)=9

1.4.4

-1 0

IF A<B THEN 300 ELSE 4(1)0
(If A<B, jump to Line 300, or else to Line 400.)

? 15>8 AND 8>12
o

Logical Operators

They are a group of operators which perform the logical opera
tion of the result of a relational expression. Six kinds of
logical operators are available: AND, OR, NOT, XOR, IMP and
EQV.

(1) Format of Logical Operators

The logical operator is used in the format as shown on the next
page.

- 43 -

<Expression> ~ <Logical operator> ~ <Expression>
or <Logical operator> ~ <Expression>
(L...J indicates for a space.)

<Expression> is generally a relational expression. What con
tains logical operators can take place of <Expression>.

Example: X < 1 L.J AND L.J X < Y
X<5 L.J AND L.J X<8 L.J OR L.J X=20
(X<50 L.J X0R L.J Y>50) L.J AND L.J X*Y<20

More than one blank should always be inserted in the positions
indicated by L.J •

(2) Result of Logical Operation and IF Statement

The result of logical operation will be true (-1) or false (0).
Therefore, the expression containing logical operators can be
used in the IF statement, as follows:

IF ~ <Expression of logical operation> ~ THEN
<Line No.> ELSE <Line No.>

Example: IF X=l OR X=2 THEN 150 ELSE 200

If the expression directly following IF is -1, then
the operation will jump to the line number following
THEN, and if it is 0, then the operation will jump to
the line number following ELSE.

It is also possible to refer to a long expression of logical
operation by the IF statement, using an assignment statement to
put the result in one variable.

Example: IF A>10 L.....I AND ~ A>B THEN 100 EL.SE 150

X=A> 10 L.J AND L.J A>B
IF X THEN 100 ELSE 150

These two IF statements have the same function.

(3) Logical Operators

a. AND

The logical operator AND is used on the basis of the following
truth table. It is an operator which is true (-1) only when
both of the terms (X and Y) before and behind it are true.

- 44 -

c x y X AND Y

True (-1) True (-1) True (-1)

False (0) True (-1) False (0)

True (-1) False (0) False (0)

False (0) False (0) False (0)

b. OR

The logical operator OR is used on the basis of the following
truth table. It is an operator which is true (-1) if either of
the terms before and behind it is true (-1).

x Y X OR Y

True (-1) True (-1) True (-1)

False (0) True (-1) True (-1)

True (-1) False (0) True (-1)

False (0) False (0) False (0)

c. NOT

The logical operator NOT is an operator which acts upon only
one term, and it negates the term.

X NOT X

True (-1) False (0)

False (0) True (-1)

d. XOR

The logical operator XOR is an operator which means exclusive
logical sum, and it is used on the basis of the following truth
table:

X Y X XOR Y

True (-1) True (-1) False (0)

False (0) True (-1) True (-1)

True (-1) False (0) True (-1)

False (0) False (0) False (0)

- 45 -

e. EQV

The logical operator EQV is an operator which judges equivalence.
It is equivalent to the negaton of XOR.

x Y X EQV Y

True (-1) True (-1) True (-1)

False (0) True (-1) False (0)

True (-1) False (0) False (0)

False (0) False (0) True (-1)

f. IMP

The logical operator IMP is an operator which performs the
logical operation of implication. It is used on the basis of
the following truth table:

X Y X IMP Y

True (-1) True (-1) True (-1)

False (0) True (-1) True (-1)

True (-1) False (0) False (0)

False (0) False (0) True (-1)

(4) Combination of Logical Operators

Expression having various kinds of logic can be formed by com
bining logical operators.

Example: (NOT L...J A) L-J OR L...J (NOT L...J B)

NOT (X>=15 L-J AND L...J X<>Y)
It should be noted that logical operators are used in principle
to act upon a relational expression as well as a variable for
which a relational expression is substituted.

(5) Internal Construction of Logical Operator

Logical operation is performed by carrying out bit invert or
arithmetic operation after converting the numeric value of the
term (X or Y) before or behind it into the two's complement of
16 bits. Therefore, 23 AND 7, for example, means a certain
numeric value. Several examples are given below:

- 46 -

(

-lL...JORL...JO =-1 16L.....JEQVw 6 =-23
-1 = (1111 1111 1111 llll)z 16 = (0000 0000 0001 0000) 2

a = (0000 0000 0000 0000) 2 6 = (0000 0000 0000 0110)2

23L.....JANDL...J7 =7 12 L...J IMP L...J 5 =-9
23 = (0000 0000 0001 0111)2 12 = (0000 0000 0000 1100)2

7 = (0000 0000 0000 0111)2 5 = (0000 0000 0000 0101)2

16 L.....J XORL...J 6 =22 NOTL...J15 =-16
16 = (0000 0000 0001 0000)2 15 = (0000 0000 0000 1111)2

6 = (0000 0000 0000 0110)2

In the above examples, the operator NOT, for example, performs
the arithmetic operation:

NOT X = -(X+l)

(6) IF Statement and Expression of Logical Operation

The IF statement is used as follows:

IFL.....J<Expression> THEN <Line No.> ELSE
<Line No.>

Example: IF A>l THEN A=A+l ELSE 20

Normally, a relational expression, an expression containing
logical operation, or an expression for which they are sub
stituted is used as <Expression>. However, the IF statement
functions for other expression. In other words, the IF state
ment executes the part following THEN when the value of <Expres
sion> is -1 and the part following ELSE in the other cases (for
other values than -1).

(7) Priority of Operators

The priority of the operators described abo"ve is as follows:

Priority Operator

1 1\
2 + -, (sign)

3 *,/
4 "-
5 MOD

6 +,-

7 =,<>,><,>,<,<=,=~,>=,=>

- 47 -

priority Operator

8 NOT

9 AND

10 OR

11 XOR

12 IMP

13 EQV

1.4,5 Operation of Character String

The operation dealing with character strings is as follows:

(1) Concatenation

Joining two character strings together is called concatenation.
Character strings are concatenated using the plus symbol (+).
For example:

Example: 10 A$= "CANON" + II AS-10(D"
2m PRINT A$
RUN
CANON AS-100

10 B$= II AS-10(D"
20 A$= "CANON II + B$
30 PRINT A$
RUN
CANON AS-100

(2) Comparison of Character strings

In the comparison of character strings, character strings are
turned into corresponding character codes one by one, and the
codes are compared from the top character by character. If all
characters are equal, the equal sign holds, whereas if the num
ber of characters, namely character codes are different, com
parison as to the size will be carried out according to the codes.
The characters whose character codes under comparison are less,
or the characters on one side that have come to an end during
comparison are judged to be less.

The details of comparison are as shown on the next page.

- 48 -

(

c
1) Corresponding characters are sequentially compared

from the top of two character strings.

2) For the comparison of characters, they are converted
into character codes and the size of these codes are
judged.

3) Characters are sequentially compared from the top, and
if character codes differing from each other are found,
the size of the entire character string is judged by the
size of the charactor codes.

4) When the same character string appears in succession,
the character string that has first come to an end is
judged to be less.

5) The null character is regarded as one of characters.

As relational operators, >, <, =, ><, >=, =< can be used. If a
relational expression is true, it means -1, and if it is false,
it means O.

For the comparison of character strings, refer to the table of
character codes.

The size relation of character strings can be learned simply by
the following:

1) Numeric characters <Alphabetic upper-case characters
<Alphabetic lower-case characters.

2) The lower number is less. (0<1<2 <9)

3) The lower alphabetic character is less.
(A<B<C .•. <Z)

The above rule is sufficient for every case unless special
characters are used.

1.4.6 Function

(1) Numeric Function

BASIC is provided with such functions as sine, cosine, log, etc.,
which can be used in such expressions of an assignment state
ment, etc.

SQR(X)

Function
/ \

name Argument

- 49 -

Example: SQR(2), LOG(A/B)

For further details of individual functions, refer to Chapter
3.

(2) User Defined Function

Functions can be used by user's definition by means of the DEF
FN statement.

DEF FNxxx (A,
. t

Functlon name

B, ... , Z) = SQR (A) * B/C + ...
f ,

Dummy argument Definition of function

(3) Character Function

As the functions which perform the operation of character strings,
RIGHT$, LEFT$, STRING$, etc. are available. For further details
of these functions, refer to Chapter 3. In the following, only
typical functions will be described:

. LEFT$ function

Returns the leftmost n characters of the character string.

10 A$= IICANON AS-100 11

20 B$=LEFT$(A$,5)
3ID C$=LEFT$(A$,12)
40 PRINT B$
50 PRINT C$
6(/) END
RUN
CANON
CANON AS-lID(/)

• RIGHT$ function

Returns the rightmost n characters of the character string.

10 A$= IICANON AS-1ID(l)1I
2(l) B$=RIGHT$(A$,6)
3ID C$=RIGHT$(A$,12)
40 PRINT B$
50 PRINT C$
60 END
RUN
AS-100
CANON AS-lID(/)

The preceding two functions take out the leftmost and the right
most of the first argument as many as the number designated by
the second argument. The following relation holds:

- 50 -

(

(
LEFT$("CANON", ~) = "CA"

1. I
Character str1ng Number of characters

As the functions to deal with character strings, MID$, STR$,
STRING$, CHR$, etc. are available in addition. Those having $
at the end of a function name are functions having any relation
with character strings. Moreover, such numeric functions as ASC,
LEN and VAL are related with the processing of character strings.

- 51 -

c

c

c

1.5 Data Input/Output

1.5.1 Assignment Statement

Suppose the following program:

10 A$= II Personal Computer ll

20 PRINT A$
RUN
Personal Computer

The result is same as above for all that PRINT is followed by
A$. This is because the "assignment" of A$= "Personal Computer"
is carried out in Line 10. In other words, as dimly seen from
the form of the expression, PRINT A$ resulted in the same as
PRINT "Personal Computer" because the constant of "Personal
Computer" was assigned to A$. The statement such as A$= "Per
sonal Computer" in Line 10 is referred to as assignment state
ment.

The assignment statement as to a numeric value can also be dealt
with in the same way. Here, it should be noted that "assign
ment" (=) differs from the "sign of equality" in the mathemati
cal sense.

Suppose the following program:

10 A=10
2CD PRINT A
30 A=A+l
40 PRINT A
RUN

10
11

The feature of the assignment statement is typically seen in the
expression in Line 30. Such an expression cannot mathematically
hold, and the sign of "=" used in the assignment statement is
not the sign of equality used in mathematics.

The variable indicates a specific part in the memory of the com
puter. And the area of the memory is identified by a variable
name such as A or A$. The sign of "=" for assignment means:
Store the result calculated by the expression following the
sign of "=" of the assignment statement in the specific memory
area.

It is seen from the above description that the left side of an
assignment should always be only one variable. In other words,
the following assignment statements as shown on the next page
do not exist.

- 53 -

A+3=B
A*2=A+2

While the above two expressions are mathematically allowed, they
are not allowed in the assignment statement. This is because
the meaning of assignment differs from the sign of equality.

The right side of an assignment statement must be an expression
using a variable, constant, operator and built-in function.

1. 5,2 Output Statement

(1) PRINT Statement / LPRINT Statement

The PRINT statement displays characters and numeric values on
the screen, and the LPRINT statement prints out them on the
printer.

PRINT can be replaced with the question mark(?) •

Example: PRINT 5
The numeric value 5 is displayed.

PRINT 3/2
The answer 1.5 of 3/2 is displayed.

PRINT 2*A
The value obtained by doubling the content of
numeric variable A is displayed.

P R I NT II BAS I C'.

The character string of BASIC is displayed.

PRINT B$
The content of character variable B$ is displayed.

PRINT "CANNON" + II AS-100"
CANON AS-100 is displayed.

To display a plural number of data, arrange data, dividing them
by commas (,) and semicolon (;). BASIC divides one line into
areas each for 14 characters. When data is divided by a comma,
the next area will be displayed from the beginning. When it is
divided by a semicolon, it will be displayed directly following
what has just been displayed.

- 54 -

(

c

(
Example: 100 PRINT IIA=II,3

110 PRINT 11$11;100
120 PRINT II DATA II ,-1
130 PRINT II DATAII,
140 PRINT 33
150 PRINT II NO. II ;
160 PRINT 1
17(]) PRINT 3,4,2
18(]) PRINT 3;4;2
RUN
A= 3
$ 100
DATA -1
DATA 33
NO. 1

3 4 2
3 4 2

Ok

Pay attention to Lines 130 and 140 as well as Lines 150 and 160.
Also when the PRINT statement is divided in this way, the same
result will be obtained.

(2) PRINT USING/LPRINT USING

PRINT USING is an instruction to display data by format control.
It is used, for example, when numeric values are displayed with
digits aligned. In addition to the designation of data same
as that of the PRINT statement, a format control character
string is contained in the statement, and the format is con
trolled by it.

Numeric Display and Format Control

• The symbol lI#n indicates for a digit, and n.n for the position
of a decimal point. For example, when data is displayed in
the format of an integer part of 3 digits and a fraction part
of 2 digits, the control character string will be as follows:

11###.##11

When the integer part of a numeric value in this case is less
than 3 digits (including the sign), it will be displayed from
the right end. When the number of digits of the fraction part
is less than 2, 0 will be inserted. When it is larger than
2, on the contrary, the digits in the third place of decimals
will be rounded. In other words, when this designated is made,
the fraction part will always be displayed in 2 digits •

• For a numeric value whose integer part exceeds 3 digits, n%n
is displayed immediately before that numeric value, and the

- 55 -

whole of it is shifted to the right, though every digit of the (
integer part will be displayed.

• If spaces are inserted between "I" and """, data will be
separated in accordance with the number of spaces when it is
divided into several parts and displayed. To output several
numeric data line by line in different formats, use the follow
ing:

II ###.### ####.### II

Thus, the first data will be displayed in the left format, and
after placing spaces, the second data will be displayed in the
right format. The control is carried out in the way that the
third is displayed in the left format, the fourth in the right
format, and so on.

To display a numeric value in the exponential form, and
"AAAA" after the digit designation, as follows:

II II

• To display the signs (plus and minus) of data, add "+" before
or behind the digit designation. When it is added before the
digit designation, the sign will be displayed at the top of
the displayed data, and when it is added behind the digit
designation, the sign will be displayed immediately after the
data.

11+###.##11
11###.#+11

If "_" is added after the digit designation, the minus sign
will be displayed after a numeric value when the numeric value
is negative. It is not allowed to add "_" before the digit
designation.

• To display the dollar sign($) at the top of displayed data,
add "$$" in the following way:

11$$#####"

An area for 2 digits is secured by "$$", though the area for
one digit is used to display the dollar sign ($).

• If "**" is used in place of "$$", the blank part where a
numeric value does not fulfill the designated number of digits
will be filled with "*" in the display.

11**#####11

An area for 2 digits is also secured by "**".

- 56 -

(
• If "**$" is added before the digit designation, "$" will be

displayed at the top of a numeric value, and the blank part
will be filled with "*". An area for 3 digits is secured by
"**$", and "$" corresponds to one of the 3 digits.

"**$####.#"

It is not allowed to use "$$" for the format designation in
the exponential form.

To display these format control characters as characters, add
" " in front of the characters. One character following " " is
displayed as a character.

Character Display and Format Control

• To output only one character at the beginning of the character
data to be displayed, use the following format control charac~
ter string:

II ! II

• To display a character string for 5 characters from the top
of character data, use the following:

That is to say, the characters for the number of digits in
cluding "," will be displayed. If given data is longer than
the designated number of characters, excessive characters
will be disregarded, and on the contrary, if given data is
shorter than it, characters will be displayed from the left
end.

Example: 100 PRINT USING "! II; IIBASIC II , IIAS-10011
1 1 0 P R I N T U SIN Gil" "II; II CAN a N II
120 PRINT USING "" ~; "TEST

II

RUN
B A
CAND
TEST
Dk

(3) PRINT#/PRINT# USING

The instruction having the mark "#" such as PRINT# is used to
carry out some operation for a file. The following description
will be concerned with the case where the screen, printer or
keyboard is designated as a file. For a disk file or a commu
nication file, refer to another paragraph.

- 57 -

The PRINT# statement is an instruction to output a numeric
value or a character string for a designated file. Although
the screen or printer can be used as an output file by opening
it, normally the PRINT statement or the LPRINT statement is
used.

The PRINT# USING statement is an instruction to carry out format
control in the same way as the PRINT USING statement, and it al
lows an output to a designated file.

1.5.3 Input Statement

The following input statements are available, and main input
statements will be described in the following. (For further
details, refer to Chapter 2.)

INPUT$
INPUT#

READ
DATA
RESTORE
INPUT
INKEY$

LINE INPUT
LINE INPUT#
GET

(1) READ/DATA/RESTORE Statements

The READ statement assigns the data prepared in a program by
the DATA statement to a designated variable. As a connected
instruction, the RESTORE statement is available.

Example: 100 READ A,B$
110 PRINT A,B$
120 END
130 DATA 492, "CANON"
RUN

492 CANON
Ok

(2) INPUT statement

The INPUT statement is an instruction which assigns entered
statements or numeric values to variables, waiting for an input
from the keyboard. When the operation is ready for an input, a
question mark (?) is displayed. An input is made by depressing
the carriage return key.

The type and number of the variable designated by the INPUT
statement should agree with those of input data. If numeric
values are entered from the keyboard when character variables
are used, they will be substituted as a character string for
those variables. If characters are entered when numeric

- 58 -

(

c variables are used, or if the number of input data does not
agree with the number of variables, the message

?Redo from start

will be printed out, and the operation will be ready for an
input again.

A message can be displayed by the INPUT statement. The message
is a prompt statement enclosed by double quotation marks ("),
and it is placed in front of a variable. When it is separated
from a variable by a semicolon (;), and question mark (?) will
be displayed after the message. When it is separated by a
comma (,), no question mark will be displayed.

In addition to this, if a semicolon is placed between INPUT
and a prompt statement, the cursor will not move after data has
been entered, and it will remain in the position at the time
when the carriage return key is depressed.

(3) INKEY$ System Variable

INKEY$ referred to as system variable and dealt with as one of
variables, so it can be used together with other instruction
statements.

Unlike the INPUT statement, it does not stop the operation, wait
ing for a key input, and if there is a key input at that time,
it will give that character, while if there is no key input, it
will give a null string. Moreover, a key input will not display
ed on the screen.

Since the existence of a key input is only momentarily checked,
it is used normally in a loop.

Example: 100 A$=INKEY$
110 IF A$= IIEII THEN END ELSE 100

When this program is executed, the operation will continue to
go through the loop until "E" is depressed. However, if the
[CANCELI or ICTRLI + ~ key is depressed, the operation will be

broken and return to the command level. Therefore, the codes
of ICANCELI and ICTRLI + ~ cannot be assigned to variables by
this instruction.

- 59 -

(

c

(
1.6 Program Execution Control

The following commands are used for controlling the execution
sequence of a program:

1. 6.1

GOTO
ON ••• GOTO
GOSUB
ON·· .GOSUB
IF···THEN ••• ELSE
FOR·· ·NEXT
WHILE ••• WEND

GOTO Statement

The GOTO statement is a command to perform an unconditional jump.
When this command is used, the BASIC program jumps to Line No.
given immediately after "GOTO". If the Line No. giving the
specified jump destination is not found at this time, an error
occurs. The contents of the jump destination line of the GOTO
statement may be a non-executable statement (such as a REM
statement) •

The use of the GOTO statement is to facilitate formation of a
loop (repeated operation), but too frequent use of the GOTO
statement may complicate the entire structure of the program.

Example: 100 PRINT IILOOp lI

110 GOTO 100

When the above program is run, characters "LOOP" are displayed
continuously on the screen. To stop the display, it is neces
sary to depress ICTRL I + [g. However,- such a continuous
loop should be used in some case. For instance, a loop is con
tinued without any meaning in order to produce a waiting and
idling state. Once an interrupt is made, control escapes from
this perpetual loop and proceeds to a separate operation such
as each interrupt processing.

1.6.2 IF ... THEN ... ELSE Statement

The IF statement is a command to perform conditional judgement.
If the value of an expression succeeding IF is "0," judgement
will be "false," and if the value is not "0," judgement will be
"true."

If the jUdgement is true, control will execute the statement
following THEN or jump to the line having the Line No. which

- 61 -

follows THEN. If the judgement is false, control will execute
the statement following ELSE or jump to the Line No. If ELSE
and the rest are omitted and the expression following IF is
false, commands from the next line onward will be executed.

By making statements following THEN into a multistatement,
several commands can be executed, if judgement is true. It is
also possible to make multiplex judgement by inserting an IF
statement into another IF statement. In such case, all the
statements should be accommodated on one line.

For the expression following IF, a logical expression is usually
employed. The logical expression consists of a logical operator
and an expression, and takes a value of -1 at true judgement
and a value of 0 at false judgement.

1,6,3 FOR, "NEXT Statement

The FOR •.• NEXT statement forms a loop between FOR and NEXT. The
number of loopings is set in the FOR statement as follows:

FOR 1=1 TO 20 STEP 2

In the above statement, the value of I is incremented by 2
starting from 1 when operation enters a loop, and a program
between the FOR and NEXT statements is repeated until the value
of I exceeds 20. This I is called the "loop variable," and it
is assumed that I=l is an initial value, 20 is an end value,
and 2 is an increment. Namely, a loop from 1, 3, 5, ••• , 19 is
repeated 10 times. If you want to form simply a 10-time loop,
however, the following will do:

FOR 1=1 TO 10
(STEP, if omitted, will be 1.) or

FOR 1=10 TO 1 STEP-1

Variables in the FOR statement in many cases are used in the
loop program. For instance, a program which uses angles at
every 100 from 0 0 to 180 0 is written as follows:

FOR 1=0 TO 180 STEP 10

A FOR···NEXT statement may enclose another FOR···NEXT statement.
Pay attention at this time to the positions of the corresponding
two NEXT statements. The following program is not allowed:

- 62 -

(

C

Erroneous Example:

FOR K=l TO 5
FO R T=2 TO 10

NEXT K
NEXT T

Correct Example;

FOR K=l TO 5
FOR T=2 TO 1 !il

NEXT T
NEXT K

As shown above, a FOR···NEXT statement must be completely enclosed
in another FOR···NEXT statement. Even if a FOR···NEXT statement is
in the state of all the conditions being satisfied from the
start, the program in the loop is executed once. You will under
stand this fact, when you run the following program:

10 FO R R= 1 TO 1
20 PRINT "LOOP"
30 NEXT R
40 PRINT R

Pay attention to the fact that the value of R has become "2" upon
completion of a single loop.' The value of a loop variable upon
completion of a single FOR···NEXT loop has become "end value +
increment" •

1. 6,4 GOSUB, , ,RETURN Statements

The GOSUB statement is a command to pass the control to a subroutine
and used in a pair with the RETURN statement.

The GOSUB statement, when executed, causes control to jump to
the specified line as with the GOTO statement and to execute
the program sequentially starting from the line. When the
RETURN statement comes, control returns to the command next to
the GOSUB statement and resumes execution starting from the com
mand.

A subroutine can call and enclose another subroutine. This pro
cedure is called the "nesting of subroutine." The number of
usable nestings is determined by the size of the stack area, in
which return destinations from the subroutine are stored.

- 63 -

Subroutine and Nesting

Main Program
Subroutine 1

· · · 0
200

Subroutine 2 · 100 GOSUB 200 I · I · llO I · V
400

~ I
I

I 250 GOSUB 40C · · · · · · / 260
~

· · /
I 500 RETURN 160 GOSUB 200 · · · 170 "' · 300 RETURN · · · ·

190 END

1. 6,5 ON" ,GOTO/ON" ,GOSUB Statements

These statements determine the lines of branching destinations
according to the values of an expression following ON. Namely,
these statements constitute a command which combines the IF
statement and the GOTO or GOSUB statement. For instance, in
the following program:

ON I GOTO 700, 800, 900

control jumps to Lines 700, 800, and 900, when the value or
variable I is 1, 2, and 3 respectively. If the value of variable
I is a negative number, an error will occur; if the value of
varaible I is other than those mentioned above, control ignores
this command and executes the succeeding command.

- 64 -

(

(
1.7 Fi Ie Handl ing

1. 7. I Fi les

BASIC employs a concept of a file for exchanging information
with I/O devices. The term "file" is a collection of informa
tion having meanings, which specifies the name of the file and
the device at which it is stored, with the help of a file de
scriptor.

1. 7.2 File Descriptor

File descriptor is composed of the following character string:

"[<Device Name>][<File Name>]11

The file descriptor is ordinarily expressed as a character string
surrounded by double quotation marks as shown above or by a
character variable. The device and file names may sometimes be
omitted.

I/O device name Device name Input Output Remarks

Keyboard KYBD: 0 X

Screen SCRN: X 0

Centronics I/F LPTl: X 0
LPT2: X 0

} optional LPT3 : X 0
LPT4: X 0

Floppy Disk Drives A: 0 0
B: 0 0
C: 0 0

} Optional
D: 0 0

RS232C I/F COMl: 0 0
COM2: 0 0
COM3: 0 0

Optional

COM4: 0 0

- 65 -

Specify a following device name when the peripheral devices are
defined.

No. I/O connector Device name

1 centronics I/F LPT1:

2 RS232C I/F or Centronics I/F COM2: or LPT2:

3 " COM3 : or LPT3:

4 " COM4: or LPT4:

5 RS232C I/F COM1:

Note: Centronics I/F can be added to only one of the
connector 2 to 4.

The numbers correspond to those in the figure below.

Rear view of display unit

(1) Device name

Device name is allocated to each I/O device and defines the device
in which the file specified by the file descriptor in question
is stored.

The <device name> in BASIC is allocated to
shown in the table on the preceding page.
is omitted, the floppy disk drive which is
specifieq..

(2) File Name

each I/O device as
If the <device name>
currently selected is

File name is used to differentiate a great number of files
stored in the I/O device specified by the device name.

- 66 -

(

c The <file name> is composed of 118 characters for file name + 3
characters for extension ll at the maximum. The file name is
punctuated from the extension by a period (.). If the extension
exceeds 3 characters, the overflowing characters are omitted.
Characters which can be used for the <file name> are limited to
the following:

Alphabet (from A to Z)
Numerals (from a to 9)
$
@

- (hyphen)

Example: "B:DATA.DAT"
File named IIDATA.DAT II in drive B.

"DATA.DAT"
File named IIDATA.DAT II in the currently selected
drive.

"KYBD:"
Represents the keyboard.

"F$"
When expressed by a character variable, F$ should
naturally be defined beforehand.

The file name and extension can be replaced by an asterisk
respectively, which can be used in place of any given file name
or extension.

The question mark can substitute a single character in the file
name and extension and be used when a p~rt of spelling is un
known.

Example: F I L E S II B : *. * II
Displays all the file names in drive B

KILL IIPROG.*"
Files called IIPROG II in all the extension in current
drive are deleted.

FILES "*. BASil
Displays all the file names having extension
called IIBAS.II

LOAD IIPROG?? BASil
The symbol II?" represents any given single charac-
ter. '

- 67 -

1. 7.3 Program Fi Ie

BASIC is provided with several commands for handling files on
the disk which stores programs and data. Here description
is given to several important commands for handling program
files and to the usage of such commands.

Main commands are given below. For their detailed commentaries,
refer to Chapter 2.

FILES: Find out the name of file stored in the disk.

SAVE: Save on the disk the BASIC program which is
currently operating.

LOAD Load the BASIC program file stored on the disk.

RUN Load and run the BASIC program file stored on the
disk.

KILL Delete the file stored on the disk.

NAME Change the name of the file stored on the disk.

MERGE: Merge the program currently stored in memory and
that stored on the disk and store the merged
program in memory.

(1) FILES (Check the Existence of File)

The FILES command is used to find out the name of the file
stored on the disk.

While the machine is in the state of waiting for a BASIC com
mand (while "Ok" is displayed), key-in the following:

FILES Q]

Then the names of all files stored on the disk in the cur
rently-selected drive, together with extension, will be dis
played on the screen.

If the existence of a file having a specific name is to be
checked, key-in the file name after the FILES command as follows:

FI LES II PROG. COWl ~
FILES 11*. BASil Q]

If the specified file exists, the file name will be displayed
on the screen. The example on the second line above shows that
the specification of the file name is substituted by an asterisk.

- 68 -

(

c Names of all the files stored on the disk which have an extension
".BAS"(BASIC program file) will be displayed.

If files on the disk in the drive which is not currently
selected are to be found out, key-in the file name preceded by a
drive name as follows:

FILES liB: MVPROG.BAS" Q]
FILES liB: *.*" GIl

In the latter example shown above, names of all the files
stored on the disk in drive B: will be displayed on the
screen.

(2) SAVE (Save the Program)

If you switch OFF power supply to the machine or restore the
MS-DOS level by the SYSTEM command, the BASIC program which you ·
have produced with much pains will disappear from memory and
cannot be listed and run again. It becomes necessary, there
fore, to save the BASIC program on external memory units such
as a disk.

Let's consider how to save on the disk your program which
you have just produced or are in the course of producing.
Denoting the name of your program file by, say, "MYPROG-l.BAS,"
key-in the following:

SAVE "MVPROG-l" G!]

Then the program will be saved on the disk in the currently
selected drive. The portion of the extension ".BAS" is added
automatically by BASIC, even if you do not write it.

If a file named "MYPROG-l.BAS" already exists on the disk,
the contents of the original file will be rewritten into the
newly-saved program. This process is time-saving and convenient,
while you are producing a program in the course of its develop
ment by frequently revising it, but you may destroy the valuable
file by mistake. Before you use the SAVE command, therefore,
you must check existing files by using the above-mentioned FILES
command and pay careful attention to naming files.

Programs saved by the SAVE command are stored on the disk
usually in a compressed binary format. Beside the above, there
is a storing method in ASCII format. This method saves program
characters as they are and can be implemented by specifying the
A-option in the SAVE command as follows:

SAVE IPROG-2", A QJ

- 69 -

The program file stored in the ASCII format has advantages that (
the program contents can be seen by means of the TYPE command of
MS-DOS and the program file can be comparatively easily handled
as a data file for I/O purposes. Also program files to be
handled in the MERGE and CHAIN statements must be this ASCII
format file.

Whereas the file saved in the binary form has an advantage of
a smaller file size than that of the ASCII form.

(3) LOAD (Load the Program)

To call the program stored on the disk, the LOAD command is
used as follows:

LOAD "A:PROG-l" ~

If the above command is keyed-in, the file "PROG-l.BAS" will be
searched out and loaded into internal memory. If the extension
is omitted, ".BAS" will be automatically added as with the
SAVE command. When a non-existent file name is specified, a
message "File not found" is displayed and no loading is per
formed.

Upon executing the LOAD command, the program which remains in
the memory of the machine is lost. If you want to save the
program, do so before you load the next program.

Files saved by the SAVE command are divided into two distinct
types, i.e., the ASCII format and compressed binary format, but
in the LOAD command, there is no need of specifying such distinc
tion, because program files, regardless of whichever form they
may use, are loaded after being automatically identified.

Upon completion of program loading, the machine usually returns
to the state of waiting for command input, and "Ok" is displayed.
Upon specifying the R-option of the LOAD command, the loaded
program is immediately run.

1. 7 ,4 Handling of Data Files

Files which become the object of I/O operation in the BASIC pro
gram include two types, i.e., the sequential file and random
file.

In the sequential file, records can be accessed one by one
starting from the leading record in the file, whereas in the
random file, a record in an arbitrary position can be directly

- 70 -

(accessed. On the other hand, handling of the random file be
comes more complex than that of the sequential file. The file
constitution is determined according to the purposes of use of
files.

Fig. 7.1 Sequential File and Random File

record 1

record 1

record 2

record 2

Y record n I ... ·I--;,;.~(EOF) record n

Sequential File Random File

(1) I/O Operation of Sequential File

Input/output to and from the sequential file are performed by
the following statements:

INPUT#
LINE INPUT#
PRINT#
PRINT#USING
WRITE#
INPUT$

For the details of the above statements, refer to Chapter 2.

The sequential file is usually accessed according to the follow
ing sequence:

1. Open the object file with the OPEN statement. Specify the
OUTPUT or APPEND mode for outputting and the INPUT mode for
inputting.

2. Input/output the file by using the I/O statement. Specify
the file to be the object of I/O operation by means of File
Nos. allocated by the OPEN STATEMENT. It is impossible,
at this time, out to the file which has been opened by the

- 71 -

INPUT mode or conversely to input form the file in the OUT- (
PUT mode.

3. When all the necessary I/O operation are completely
executed, close the file with the CLOSE statement.

Let's see an example of the program which performs I/O operation
of the sequential file according to the above-mentioned sequence:

The following SQNC-l forms a new data file called "TEST.DAT."
Data to be written into the file are assumed to be the charac
ter code and the characters expressed by the character code.

1O)(lJ ' SQNC-1
11m ' create TEST. OAT
120 OPEN "TEST. DATil FOR OUTPUT AS 1
130 FOR I=ASC("A") TO ASC("E")
140 PRINT#l, I, STRING$(10,CHR$(I))
15(lJ NEXT
16(lJ CLOSE 1

The OPEN statement on Line 120 allocates data file "TEST.DAT"
to File No.1 in the OUTPUT mode. This format may be also
written in the following way:

OPEN "0", 1, "TEST.OAT"

Data are formed by the FOR-NEXT loop on Lines 130 to 150, and
stored in the file. Since the character code of "A" is 65 and
that of "E" is 69, variable I changes from 65 to 66, ••• , and
69, as it loops. The PRINT# statement on Line 140 prints out
this character code and a continuation of 10 respective charac
ters.

The CLOSE statement on Line 160 closes ~he file having File No.
1. After this CLOSE statement, File No. 1 can be used for
opening other f1les.

The execution of this SQNC-l produces a data file on the disk.
Check to see, by using the FILES command, if the file has been
formed.

Next, let's input the data from this data file. Program SQNC-
2 to be used for this purpose and the results of its execution
are shown below.

- 72 -

c 1(1)0 I SQNC-2
11(1)' rea d TEST.DAT
120 OPEN "TEST.DAT" FOR INPUT AS 1
130 INPUT#l, I, A$
140 PRINT I, A$
150 IF NOT EOF(l) THEN 130
160 CLOSE 1
Ok
RUN

65
66
67
68
69

Ok

AAAAAAAAAA
BBBBBBBBBB
CCCCCCCCCC
0000000000
EEEEEEEEEE

First, data file "TEST.DAT" is opened in the INPUT mode on Line
120. This OPEN statement can be also written in the following
way:

OPEN "1",1, "TEST.DAT"

In the INPUT# statement on Line 130, data are inputted to
variable I and A$ starting from data file No.1. The form, num
ber and sequence of variables in the INPUT# statement should
match those of the data file; otherwise it is impossible to
input the data correctly. In this case, the character code
(numeric variable I) and character string (character variable

A$) are inputted sequentially as written in the program SQNC-l.

The PRINT statement on Line 140 displays on the screen the con
tents inputted to the variables.

The IF-THEN statement on Line 150 checks to see, by using the
EOF function, whether or not the file r~cord has reached the
End of File. When the file record reaches the End of File, the
EOF function returns "-1." Since this negative is taken up in
the conditional formula, operation returns to the INPUT state
ment on Line 130 and continues inputting, if EOF is not valid.
When the file record is exhausted, operation proceeds to Line
160 and closes the date file.

If the file is opened in the APPEND mode when data are stored
into the file, the contents of the previous file remains and
the newly-written contents are added thereto. An example of
storing dat'a in the APPEND mode to the data file formed by
SQNC-l mentioned earlier is given in SQNC-3 as shown on the next
page.

- 73 -

100'SQNC-3
110'append to TEST.DAT
120 OPEN "TEST.DAT" FOR APPEND AS 1
130 FOR I=ASC("F") TO ASC("G")
140 PRINT#l, I, STRING$(10,CHR$(I))
150 NEXT
160 CLOSE 1
Ok
RUN
Ok
RUN

65
66
67
68
69
70
71

Ok

ISQNC-2"
AAAAAAAAAA
BBBBBBBBBB
CCCCCCCCCC
DDDDDDDDDD
EEEEEEEEEE
FFFFFFFFFF
GGGGGGGGGG

SQNC-3 newly appends data "F" and "G". After executing SQNC-3,
SQNC-2 is loaded and executed by the RUN command in order to
check the contents of TEST.DAT.

Beside the EOF function used in SQNC-2, a number of functions
related to file I/O operation are provided.

The LOC function returns the number of records read or written
after the opening of the file, if the function is used in
sequential I/O operation. Here a single record consists of a
data block 128 bytes long.

The LOF function expresses the number of bytes allocated to the
file, namely, the file size. The number of bytes returned by
the LOF function is a multiple of 128 bytes.

In the I/O operation of the sequential file, reading/writing is
performed sequentially one data after another starting from the
leading item. Since the sequential file is comparatively simpler
in its procedure than the random file as shown above, the former
is more widely used in ordinary cases.

In addition to the I/O statement used in the 3 program examples
mentioned above, statements such as PRINT# USING, WRITE#, and
LINE INPUT# can be used as and when necessary. For the details
of formats of these statements, refer to Chapter 2.

(2) I/O Operation of Random File

The I/O operation of the random file requires a slightly more
complex sequence than that of the sequential file. To make up

- 74 -

(

for this shortcoming, any records in the random file can be ac
cessed directly and randomly.

In the random file, a single memory unit is called a "record,"
and records are controlled by affixing Nos. to them. A record
length can be declared in the OPEN statement (the record length,
if omitted, will be 128 bytes).

These two file types also differ in the recording format on the
disk. The sequential file is recorded in the ASCII format,
whereas the random access file is recorded in the packed binary
format. At the time of I/O operation particularly of numeric data,
tnerefore, format converting operation becomes necessary.

A statement related to I/O operation of the random file
is given below.

FIELD
GET
LSET
PUT
RSET

As functions for format conversion, the following are used:

CVI/CVS/CVD
MKI$/MKS$/MKD$

Data are stored to the random file in the following procedure:

1. Open the file in the random access mode by using the OPEN
statement. If necessary, declare the size of a record.
Omission of this declaration means that the record size
is 128 bytes long.

2. Allocate the random buffer area to ~ariables to be outputted
to the file, by using the FIELD statement.

3. Set output data (constants and variables) to the random
buffer by using LSET and RSET statements. At this time it
is necessary to convert numeric variables into character
type data by using the MKI$/MKS$/MKD$ function.

4. Output the contents of the random buffer to the record
specified by the file, using the PUT statement.

5. Upon completion of all I/O operations, close the file by
using the CLOSE statement.

When data are read out of the random file, Items 3 and 4 will
be changed as shown on the next page.

- 75 -

3. Input the specified record to the random buffer by using
the GET statement.

4. Inputted data can be cited in the program. If the data are
the numeric type, they are stored in the character format
at the buffer area, and therefore, they must be returned
to the original format by using the CVI/CVS/CVD function.

The random file once opened permits a direct access to an arbi
trary record and can read and write them. During a period of
one time of OPEN to CLOSE, operation of reading out a record,
correcting it and outputting it, as it is, can be executed for
any number of times.

Let's form a random file according to this procedure. A pro
gram example is shown below.

100 1 Randm-1
110 OPEN "TEST.DAT" AS 1 LEN=12
120 FIELD 1, 2 AS N$, 10 AS A$
130 NO=ASC(IA")-l
140 FOR N=l TO 26
150 LSET N$=MKI$(N+NO)
160 LSET A$=STRING$(10,CHR$(N+NO))
170 PUT 1, N
180 NEXT N
190 CLOSE 1

The above program produces character codes from A to Z (from 65
to 90) and forms a random file string which has, as data, charac
ter strings consisting of 10 such characters arranged continu
ously.

A single record in this example is composed of 2 bytes for the
character code (integer) and 10 bytes for the character string,
12 bytes in total.

1 record 12 bYtesl ~o bYte~
L-~t~--------~----~~+----~----~----~

Character code Character string

This record from A to Z, that is, 26 records in total are out-,
putted.

The OPEN statement on Line 110 opens data file "TEST.DAT" in
the random access mode. The record length is declared to be 12

- 76 -

(

c bytes long. This line also can be written in the following
format:

OPEN IIRII,l, IITEST.DAT II ,12

In the FIELD statement on Line 120, the leading 2 bytes in the
12-byte random buffer area is allocated as variable N$ and the
remaining 10 bytes as A$.

Do not use variables, which were specified in the FIELD state
ment, on the left-hand side of the assignment statement or in
the INPUT statement in the same program, that is, no assigning
operation should be made except in LSET and RSET statements.
If you make this assigning operation, the variable in question
will be remoVed from the random buffer area and return to be an
ordinary variable.

At every looping on Lines 140 to 180, data of a single record
is outputted. Here "N" represents Record No.

On Line 150, the character code in the integer form is converted
into the literal form by using MKI$ function and set to M$ (2
bytes) in the random buffer. On line 160, a character string
of 10 characters is similarly formed by using STRING$ function
and set to A$ in the random buffer.

Upon completion of setting to the random buffer, the PUT state
ment on Line 170 is used to output the contents of the buffer
to the N-th record.

The above-mentioned outputting operation is sequentially re
peated from record 1 to record 26, and then the file is closed
by the CLOSE statement on Line 190.

In the preceding program example, data were stored sequentially
from the leading record in order to prepare the data file easily.
Naturally random access is also possible in which data can be
stored starting from the last record, for example.

Now let's see the example of random access. The next program
example reads out an arbitrary record in the random file which
has been prepared a short while ago and displays its contents.

When the program is run, the machine asks for Record No. When
you give Nos. 1 to 26, the program reads out the records from
the file and displays them on the screen. When No. below 0 is
given, the program is terminated. The execution example of the
program is also shown after the list.

- 77 -

100 1 Randm-2
110 OPEN IITEST.DATII AS 1 LEN=12
120 FIELD 1, 2 AS N$, 10 AS A$
130 INPUT IIRecord ll ;R
140 IF R =0 THEN
150 GET 1, R
160 PRINT CVI(N$), A$
170 GOTO 130
180 CLOSE 1
RUN
Record?l

65 AAAAAAAAAA
Record?2

66 BBBBBBBBBB
Record?26

90 ZZZZZZZZZZ
Record?0
Ok

The OPEN statement on Line 110 opens the data file which was
formed a short while ago. The FIELD statement on Line 120
allocates the field of the random buffer. The names of varia
bles allocated may be different from those used in IIRandom-l,"
but the record length of the OPEN statement and the allocated
size and sequence of the FIELD statement must coincide with
those used in "Random-l"; otherwise data cannot be inputted
correctly.

Line 130 inputs No. of the record to be read out; Line 150
stores the prescribed record from the file into the random buf
fer.

The character-type data can be cited as it is, but numeric-type
data is converted into the original format, be core it is cited.
In this case, N contains a character code (integer), and there
fore, it is returned to its original format by using the CVI
function.

The above-mentioned input operation is repeated until Record No.
below "0" is specified. At the end, the file is closed by the
CLOSE statement.

The next table shows the relation between the form of I/O data,
used quantity of the random buffer and function used for type
conversion.

- 78 -

c

(

C Data type Type converting Occupied quantity
function of random buffer

;.. (Number of Character .. characters)

MI<I$ ~ Integer 2 bytes
~ CVI

Single precision MKS$..
4 bytes real oe CVS

Double precision MKD$;110

real OIl! CVD 8 bytes

When the LOC function is used in the random access mode, the
record No. which was accessed immediately before is returned.

The LOF function can check the size of the file as in the case
of the sequential file.

- 79 -

c

c

(

c 1.8 Graphics

1. 8.1 Coordinates

The display capacity of the AS-100 CRT screen is 80 characters x
25 lines, containing 640 x 400 dots. Display on the ordinary
CRT screen is given in units of characters, whereas display on
the screen which employs the graphic function is performed in
units of dots.

The graphic command requires information concerning the posi
tion on the screen where the user is going to draw a figure.
The user gives this position in the form of coordinates which
are set at 0 to 639 in the X-axis (horizontal) direction and at
o to 399 in the Y-axis (vertical) direction. These coordinates
correspond to dot positions on the screen and are called the
"absolute coordinates."

(0,0) ---------.l.~ (639,0)

(0,399) (639,399)

Against this coordinate specification by the absolute coordinates,
there is a method for specifying coordinates by relative coordi
nates. In the latter method, the point which was used last is
employed as an origin, and a new point is displayed on the basis
of this origin. The format used in the method is given below.

STEP «X-offset>,<Y-offset»

Namely, the vertical and horizontal offsets from the point used
last are employed to specify new coordinates.

<Absolute coordinates> <Relative coordinates>

(0,0) -----....... (639,0) If the last reference (-320,-200) ,. (319,-200)
~------------~~

(0,399)

poing lies at the ab-
solute coordinates of
(320.2Y

(639,399)

- 81 -

(-320,199) (319,199)

1.8.2 Palettes and Color Specification

Selection of the color (attribute) in graphic processing is made
through palettes. In the following, description is given to
the palette and color (attribute).

The AS-IOO Color Display can give 27 colors including black
(non-display). These 27 colors correspond to Color Nos. 0 to
26. For instance, if a command to draw a circle on the screen
is to be executed, specify the palette No. which red is defined
and a red circle will be drawn on the screen.

The AS-IOO Color Display is provided with 8 palettes, which
correspond to Palette Nos. 0 to 7. Further, information about
what palette was used in drawing the display is stored in respect
of all displayed figures on the screen, even after the figures
have been drawn. It is possible, therefore, to change the dis
played color by changing the color specification of the palette.
Assume that the above-mentioned red circle was drawn by using
Palette No.4 and change the color definition of Palette No.4
to white after the figure was drawn, and then the red circle
will be changed to a white one.

On the other hand, the Monochrome Display is divided into one
V-RAM model and two V-RAM model and provided with palettes in
the same way as with the Color Display. These palettes can be
defined with Color Nos. Provided that these Color Nos. actual
ly mean attribute. The one V-RAM model is provided with two
palettes and the two V-RAM model with four palettes.

(1) PALETTE Statement

The PALETTE statement is a command to define Color No. to the
palette used in the COLOR statement or graphic command. Its
format is shown below.

PALETTE <Palette No.>,<Color No.>

Palette Nos. mean numerals 0 to 7 to be used for specifying
each palette.

The correspondence between Color No. and color (attribute)
is shown on the next page.

- 82 -

c

• For Color Display

Color Color
No. r R g

0 0 0 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 1

7 0 0 1

8 0 0 1

9 0 1 0

10 0 1 0

11 0 1 0

12 0 1 0

13 0 1 0

14 0 1 0

15 0 1 1

16 0 1 1

17 0 1 1

18 1 1 0

19 1 1 0

20 1 1 0

21 1 1 0

22 1 1 0

23 1 1 0

24 1 1 1

25 1 1 1

26 1 1 1

27 1 1 1

28 1 1 1

r: Half brightness red
g: Half brightness green
b: Half brightness blue

G

0

0

0

1

1

1

1

1

1

0

0

0

1

1

1

1

1

1

0

0

0

1

1

1

1

1

1

1

1

- 83 -

b B

0 0

0 1

1 1

0 0

0 1

1 1

0 0

0 1

1 1

0 0

0 1

1 1

0 0

0 1

1 1

0 0

0 1

1 1

0 0

0 1

1 1

0 0

0 1

1 1

0 0

0 1

1 1

1 1

1 1

R: Red
G: Green
B: Blue

Remarks

Black

Blue

Green

Cyan

Red

Magenta

Yellow

White

• For Monochrome Display

Color Attribute
No. Remarks

B H S

0 0 0 0 Non-display

1 0 0 1 Standard brightness

2 0 1 0 High brightness

3 'V 26 0 0 1 Standard brightness

27 1 0 1 Standard brightness blinking

28 1 1 0 High brightness blinking

When GW-BASIC is started, palettes are defined with the follow
ing Color Nos. as initial values:

• For Color Display

Palette
0 1 2 No. 3 4 5 6 7

Color No. 0 1 3 4 9 10 12 13
(Color) (Black) (Blue) (Green) (Cyan) (Red) (Magenta) (Yellow) (White)

• For Monochrome Display (One V-RAM model)

Palette No. 0 1

Color No. 0 1
(Attribute) (Non-display) (Standard brightness)

• For Monochrome Display (Two V-RAM model)

Palette No. 0 1 2 3

Color No. 0 2 27 1

(Attribute) (Non-display) (High brightness) (Standard bright- (Standard
ness blinking) brightness)

Colors which have been defined to the respective palettes by the
PALETTE statement will be effective until the palettes are re
defined by the next PALETTE statement.

- 84 -

(

c (2) COLOR Statement

The COLOR statement is a command to specify palette Nos. which
define the colors of the foreground and background on the screen,
an_d written in the following format.

COLOR [<foreground>][,<background>]

The <foreground> consists of Palette Nos. (0 to 7) which define
the colors of the foreground; the <background> consists of
Palette Nos. to define the colors of the background. If <back
ground> is omitted, Palette No.O will be automatically defined.

Initial values of definitions of palettes in Color Dispaly are
set at Palette No.7 for the foreground and Palette No.O for the
background. The initial values of palette definitions in Mono
chrome Display are set at Palette No.1 (one V-RAM model) or 3
(two V-RAM model) for the foreground and at Palette NO.O for
the background.

(3) PAINT Statement

The PAINT statement is a command to paint completely with speci
fi.ed colors the closed areas of various figures drawn by the
DRAW and CIRCLE statements, etc., and written in the following
format:

PAINT «x-coordinate>,<y-coordinate» [[,<color>
STEP «x-offset>,<y-offset» [,<boundary color>]]

Example-I: 100 CLS
110 CIRCLE(150,150),100,4
120 PAINT(150,150),4,4

In Example-I, the interior of a
circle drawn by the CIRCLE state
ment on Line 110 is completely
painted by the PAINT statement.
The execution result is shown
in the figure on the right.

Example-2: 100 CLS
110 CIRCLE(150,150),100,4
120 PAINT(300,300),4,4

- 85 -

(0,0)--------

(0,399)

Color defined
to palette

No.4

~~~I- (150,150) 

Circle drawn 
by CIRCLE 
statement 

(639,0) 

(639,399) 



, 
In Example-2, the exterior of a 
circle drawn by the CIRCLE state
ment on Line 110 is completely 
painted by the PAINT statement. 
The execution result is shown 
in the figure on the right. 

Example-3: 100 CLS 
11~ CIRCLE (150,150), 

100, 1 
12~ CIRCLE (250,250), 

100,4 

Intersections of two circles 
drawn by the program in Example-
3 are displayed with a color de
fined by Palette 4. Therefore, 
the circle drawn by Line 110 is 
not a closed area. If the fol
lowing line is executed here, 
the entire screen will be com
pletely painted. 

130 PAINT(150,15~),1,1 

(0,399) 

(639,0) 

Color 
defined 
to pal
ette No.4 

(639,399) 

(0,0) • (639,0) 

Color de
_..J#'"-""'" fined by 

alette 
No.4 at 
inter 
section 

Circle Circle drawn 
drawn by by palette 
pallete No.Ll 
No.1 

(0,399) (639,399) 

As can be seen from this example, the intersections of the 
figure are displayed in the color of the figure drawn last. 

If you omit the specification of the <boundary color> which is 
one of the operands of the PAINT statement, the same Palette 
No. as that of the <color> will be defined. For instance, 
Line 120 in Example-l specified as follows: 

120 PAINT(150,150),4,4 

The same execution result will be obtained, if the following 
specification is made. 

120 PAINT(150,150),4 

The object to be painted completely, when a PAINT statement is 
used, must be a closed area. Otherwise, the whole screen will 
be completely palnted. 

- 86 -



- 1.8.3 liD Operation of Graphic Pattern on Screen 

A graphic pattern drawn inside a rectangle having two specified 
points as the apexes of 2 diagonal lines is inputted to an ar
ray variable (by GET statement), or the contents of the array 
variable are outputted on the screen (by PUT statement). The 
formats of the GET and PUT statements are given below. 

GET 1 «xl-coordinate>, <Yl -coordinate» 1-
STEP «xl-offset>,<Yl-offset» 

I «x2-coordinate>,<Y2-coordinate» I <Arra variable name> 
STEP «x2-offset>, <Y2-offset» , y 

PUT I «x-coordinate>, <y-coordinate» I 
STEP «x-offset>,<y-offset» , 

<Array variable name> [,<conditions>] 

* For the details of operands, refer to Chapter 2. 

The array variable specified by the <Array variable name> must 
be a one-dimensional numeric-type variable. -Also before start
ing the execution of the GET command, the necessary memory area 
must be declared by the DIM statement. The value of the suffix 
to the array which is specified by the DIM statement is obtained 
by the following calculation formula. 

<Value of suffix specified by DIM statement> 
= INT «4+INT«x+7)/8)*y*3)/n)+1 

where x is the number of dots in the X-axis direction, y 
is the number of dots in the Y-axis direction, and n 
takes the following forms depending upon the form of 
arrays: 

• Integer-type array 2 n = 
• Single-precision-type array: 4 n = 
• Double-precision-type array: 8 n = 

Example: 10 DIM IMAGE(267) 
20 CLS 
30 CIRCLE (100,100), 25 
40 GET (75,75) - (125,125),IMAGE 

80 PUT (300,300),IMAGE,PSET 

In the above example, the CIRCLE statement on Line 30 draws a 
circle with a center (100,100) and a radius of 25, and the GET 
statement inputs a graphic pattern inside a rectangle, which 
has apexes (75,75) and (125,125) of 2 diagonal lines, into a 

- 87 -



real-type array called "IMAGE." Further, the PUT statement on 
Line 80 inputs the contents of array "IMAGE" to the area, which ( I 

has coordinates (300,300) at the upper left corner, according 
to the conditional expression PSET. 

The value of suffix specified by the DIM statement will be 256 
by assigning x = 51, Y = 51, and n = 4 into the calculation for
mula on the previous page, since IMAGE is a real-type array. 

<Value of suffix> = INT«4+INT«x+7)/8)*y*3)/n)+1 
= INT ( (4 + INT ( (51+ 7 ) /8) * 51 * 3 ) 4 ) + 1 
= 267 

- 88 -



c 1.9 Machjne Language Subroutines 

BASIC is provided with an interface function to the machine 
language program. In the following, description is given to the 
method of accessing from the BASIC program to the machine lan
guage program. 

For the details of the machine language program of the 8088 CPU, 
refer to other reference books. 

1. 9 I I Address Generation 

The 8088 CPU, which is used in the machine, has 20-bit addresses, 
and therefore, the CPU has an address space of 220 = 1M-bytes 
(approx.). The 8088 CPU does not directly handle the total are,a 
of this wide address space, but handles the address space by 
dividing it into small sections called "segments." This seg
ment is a sort of a window peeping into a part of the wide space 
and has a size of 64K-bytes. 

The following diagram shows the concrete method of address 
generation: 

16 bits 4 bits 

'--__ S_e_gm_e_n_t_v_a_1_ue __ .... 1 0000 

4 bits 16 bits 

o 0 0 0 .... 1 ____ O_f_f_s_e_t ___ ~ 
+) 

20 bits 

Effective addres 

&HOOOOO 

Segment: 
&HBOOO 

&HBOOOO 

&HBFFFF 

&HFFFFF 

I-' 

~ 
ti 

.~ 

Seg- ~ 
~ ment ~ 

;,.,BOOO ~ 

"<: 

Jm rt 
Pl,j::o. CD 

1"0:;': !II 
1"01 
liti 
0"<: ~ xrt 
• CD 1"0 
~!II Ii 

0 
X . 

Memory 

The segment value (16-bit) and offset (16-bit) are added up as 
shown in the figure above to obtain ~ 20-bit effective address. 
The carry generated by the adding-up is ignored. 

Four registers which reserve segment values, i.e., CS (code seg
ment), DS (data segment), SS (stack segment) and ES (extra seg-

- 89 -



ment) , are provided. By setting a value to each register, each ( 
segment can be allocated to an arbitrary position (in steps of 
16 bytes) in the 1M-byte address space. Once the segment is set 
up, addresses in the same segment can be accessed simply by 
changing the offset value. 

Addresses of memory specified by BLOAD and BSAVE commands and 
POKE and CALL statements are not made effective addresses as 
they are, but used as offset values in the process of effective 
address calculation. Segment values can be changed by the DEF 
SEG statement. 

1. 9.2 Load and Save of Machine Language Subroutine 

BLOAD and BSAVE commands are provided in order to load and save 
not only the machine language program but also memory image data .• 

In saving memory image data, specification of the address at 
which saving is commenced and the size of saving, in addition to 
that of the file descriptor, is required. 

Example: BSAVE "CORE. MEN" , 0, &H1000 

In this example, 4K-bytes from the leading part of the segment 
are saved by the name of "CORE.MEM" in the currently-selected 
drive. The SAVE commencing address here is treated as an offset 
value from the leading part of the currently-declared segment. 
When necessary, the segment should be declared by the DEF SEG 
statement before performing BSAVE. 

For BLOAD, specification of oniy the file descriptor is required. 
Specification of the LOAD commencing address is possible, but 
even if it is omitted, the address specified at the time of 
BSAVE will be automatically set. Now, such an address is an off
set value in the segment, and therefore, if a segment is set 
which is different from the segment in which BSAVE was performed, 
the data will be loaded at a different address. 

Example: BLOAD "CORE.MEM" 

When the machine language program is allocated in memory, there 
are two methods, that is, the method of placing the machine 
language program in the BASIC segment and that of placing it 
outside the BASIC segment. 

In allocating the machine language program in the BASIC segment, 
operation such as segment alteration is unnecessary, but the 
working area of BASIC should be restricted in order to prevent 
from destroying the machine language program. This restriction 

- 90 -



c is performed by "/M:option," which is an option of GWBASIC com
mand at the time of BASIC start or by employing the CLEAR state
ment after the BASIC start. 

Example: At BASIC Start: 

GWBASIC /M:&HCOOO 
After BASIC Start: 

CLEAR, &HCOOO 

In any of the examples mentioned above, the working area of 
BASIC is restricted to 48K-bytes, and therefore, the area of 
remaining 16K-bytes out of the 64K-byte segment allows alloca
tion of the machine language program. The above-mentioned 
operation is unnecessary when the machine language program is 
allocated outside the BASIC segment. The working area of 
BASIC at this time becomes the total 64K-bytes wide. The DEF 
SEG statement is used to set up a new segment in the area which 
is not used by BASIC and to allocate the machine language pro
gram there. 

1.9.3 Storage Method of Variables 

(1) Storage of Character String 

Character-type variables are stored by the following 2-step 
constitution: For a single character variable, a 3-byte area 
called the "string descriptor" is provided, which contains in
formation of the length of the character string (1st byte) and 
the storage locations of the character string (2nd and 3rd bytes) 
as shown in the figure below. 

By tracing the addresses given by the 2nd and 3rd bytes of the 
string descriptor, the object character string can be obtained. 
When the storage address of the character variable is checked 
by the VARPTR function, the 1st-byte position (address) of the 
string descriptor is returned. 

- 91 -



1st byte: 

2nd byte: 

3rd byte: 

String length 

Offset (lower position) 
indicating storage 
location of string 

Offset (upper position) 
indicating storage 
location of string 

string Descriptor 

~: Address returend by 
VARPTR function 

(2) Numerals Handling 

~ 

J 
"c" 

"A" 

"N" 

· · · I · 

"N" 

Contents of Character 
variable 

The contents of a numeric variable are stored and calculated in 
an 8-byte area called the "floating-point accumulator (FAC)." 
This FAC area is handled differently depending upon the integer
type, single precision real-type and double precision real-type 
data. 

1st byte: 

2nd byte: 

3rd byte: 

4th byte: 

5th byte: 

6th byte: 

7th byte: 

8th byte: 

Integer type 

Lower byte ~ 
.. 

Upper byte ~ 
,/. 

Single precision 
type 

'¥mf1sra parf ower 
I"farft:lssa part 
(interrnedlate) 
Marftlssa part ~ 
(upper) 
Exponent part 

'/, ,/-", '/' ///. /. 

8 bits~ ~8 bits ~ 

Floating-point Accumulator (FAC) 

- 92 -

Double precision 
type 

"'E~--8 bits--

Address returned by 
VARPTR function 

( 



c For the integer-type variable, the lower 8 bits out of the 16-
bit value is stored at the 5th byte of FAC and the upper 8 bits 
at the 6th bit by the formation of the two's complement. 

For the single precision real-type variable, the part from the 
5th byte onward of FAC is used. In the exponent part at the 
8th byte, the value of (exponent - 128) is stored. At the 7th 
byte, the upper 7 bits of the mantissa part are stored. The 
remaining one bit (the uppermost bit in the 7th byte) represents 
the sign of the mantissa parts, "0" showing positive and "1" 
negative. The decimal point is treated to have been placed at 
the left side of the uppermost bit of the mantissa part, namely, 
at the left side of the 7th bit of the 7th byte. The 5th and 
6th bytes store the lower 8 bits and intermediate 8 bits of the 
mantissa part respectively. 

For the double precision real-type variable, the entire area of 
the floating-point accumulator is used. The 1st to 7th bytes 
in this case are used for storing the mantissa part. The 5th to 
8th bytes store the exponent part and the upper 3 bits of the 
mantissa part in the same formats as those for the single preci
sion real-type variables. The 1st to 4th bytes store the lower 
4 bytes of the mantissa part. 

1.9.4 Caution concerning Machine Language Subroutine 

For calling a machine language subroutine from BASIC, two methods 
are used, i.e., the method using the USR function and that using 
the CALL statement. At this time, the execution commencing ad
dress and argument are transferred between BASIC and the machine 
language program, and in both cases of the USR function and CALL 
statement, attention should be given to the following rules: 

• At the instant when the program enters the machine language 
subroutine, the value at the segment of in the BASIC data area 
is set to all the 3 segment registers DS, ES, and SSe 

• At the CS (code segment) when the program enters the machine 
language subroutine, a value is set which was specified by the 
DEF SEG statement immediately before. When the DEF SEG state
ment is not executed or the operand of the DEF SEG statement 
immediately before is omitted, the CS register is set to a seg
ment value which is the same as those of other 3 segment 
registers. 

• When the argument transferred from BASIC to the machine lan
guage subroutine is of the character type, what is actually 
transferred is the leading address (offset) value of the 
string description (3-byte). 

- 93 -



· It is allowed to change the contents of the character string 
indicated by the string descriptor at the machine language 
subroutine side, but alteration of the string descriptor it
self should be avoided. 

• At the instant when the machine language subroutine enters 
execution, SP (stack pointer) indicates the stack area of 16 
bytes (8 words) which has been prepared for the use of the 
machine language subroutine. If a stack area exceeding this 
area is required, it is necessary to set up an independent 
stack segment and stack pointer in the machine language sub
routine. 

• When the program returns from the machine language subroutine, 
the segment register and stack pointer which have undergone 
internal operation should be returned to their original values. 

• For the return to the BASIC program, an Inter-segment Return 
instruction should be used. 

When an interrupt is inhibited in the machine language sub
routine, the interrupt should be enabled before the operation 
returns to BASIC. 

1.9.5 USR Function (Calling Machine Language Subroutine - 1) 

The format of the USR function is as follows: 

USR [<No.>] «argument» 

Here the <No.> means any No. (0 to 9) allocated by the DEF USR 
statement to the machine language subroutine to be called. If 
the <No.> is omitted, it is assumed that "USRO" has been speci
fied. 

For the <argument> , the name of the variable to be transferred 
to the machine language subroutine is written. Arguments of 
both the numeric and character types can be specified. The 
argument should be specified by all means. Even if the argu
ment is not required on the machine language subroutine side, a 
dummy argument should be written. 

The execution commencing address of the machine language sub
routine is defined by using the DEF USR statement as the offset 
value in the segment which was declared at the time of calling. 

When the machine language subroutine is called by the USR func
tion, the AL register stores a value which represents the type 
of the argument. This value corresponds to each type of the 
argument as shown in the table on the next page. 

- 94 -

( 



c Value of AL-register Type of argument 

2 Integer (2 bytes) 

3 Character 

4 Single precision real 

8 Double precision real 

If the argument is .of the character type, the leading address 
in the string descriptor (3-byte) will be stored in the DX 
register as an offset in the BASIC data segment. The actual 
character string is stored starting from the address specified 
by the 2nd and 3rd bytes of the string descriptor. Information 
concerning the length of the character string is stored at the 
1st byte. 

If the argument is of the integer type, single precision real 
type or double precision real type, the BX register points to 
the 5th byte in the 8-byte area of FAC. In this case, the 
address also is transferred as an offset value in the BASIC data 
segment. If access is made to the using area corresponding to 
any of the respective types of arguments, it is possible to 
receive the argument. 

1.9.6 CALL Statement (Calling Machine Language Subroutine - 2) 

The format of the CALL statement is as follows: 

CALL <variable name>[«argument> [,<argument> ••• ])] 

To the variable specified by the <variable name>, the execution 
commencing address of the machine language subroutine is assigned 
beforehand. The execution commencing address is represented by 
the offset value in the segment which was declared by the DEF 
SEG statement immediately before. 

The <argument> is followed by the names of variables in con
tinuation to be transferred to the machine language subroutine. 
It is not allowed to write constants, both numeric and character 
types, at this position. 

In the CALL statement, the machine language subroutine is called 
by the following procedure: 

1. The storage locations of individual arguments are expressed 
as 2-byte offset values in the BASIC data segment and are 
piled up at the stack according to the sequence written in 
the row following the <argument>. 

- 95 -



2. The segment and offset values of the return destination 
from the machine language subroutine are piled up at the 
stack. 

3. Control is transferred to the macnine language subroutine 
at the address to be determined by the current segment value 
and by the offset value which is stored in the <variable> 
of the CALL statement. 

When CALL SUBRT (AI, B%, C$) is executed, for instance, the 
stack will become as shown in the figure below. 

1 Length of char-

[ SP ]- _________ ) ~~h~~tv~~es :r } 

acter string 
__ J.___ Storage location 

3 of character 
of return 

- --- - - ---- destination 

[SP + 4]- } Points to string 
---------- descriptor of C$ 

[SP + 6] ____________ } Points to FAC of 
B% 

[SP + 8] ____________ } ~!ints to FAC of 

Stack at the time of 
branching to the machine 
language subroutine "SUBRT" 

-

-

String de- strlng 
scriptor of 
C$ 

~~ 
1 

2 
3 
4 preCl 

c....,. 5 In~eJer 
6 

-single, 7 
8 prec.slin 

e, 
Slon 

FAC of J1.! or B% 
(Floating-point Accumulator) 

CALL SUBRT (AI, B%; C$) 

- 96 -

"c" 
"A" 

. . 
"0" 

Contents 
of C$ 

( 



c 1.10 Others 

1.10,1 RS232C Communication Ports 

(1) Ports 

BASIC is subject to control by the communication ports called 
"RS232C" which meet the non-synchronizing serial data transfer 
standard specification. 

Four communication ports at the maximum can be installed and 
have the respective device names, i.e., COMl: to COM4:. 

These ports can be used for communication to other machine (such 
as a computer) which has RS232C ports. 

To use the communication ports, first the file should be opened, 
as in the case of other I/O devices. 

The OPEN "COM statement is used to open the communication file. 
The OPEN "COM statement obtains correspondence between the com
munication ports (Circuit No.) and File No. and sets the com
munication baud rate (number of bits communicated during 1 sec), 
parity, data length and stop-bit width. The default value at 
the time of port omission is as follows: 300 bauds, even parity, 
a character of 7-bits in length and stop bit 1. 

(2) Input Interrupt 

An exclusive use instruction is provided to permit inputting to 
the RS232C communication ports by using an interrupt. The ON 
COM(n) GOSUB statement defines the Commencing Line No. of the 
interrupt processing routine with respect to the input inter
rupt from the communication circuit. The symbol "n" is not 
File No., but Circuit No. The interrupt is disabled when Com
mencing Line , No. is defined as "0" or the COM OFF statement is 
executed. 

The interrupt occurs when the COM (n) ON is executed and the 
data is inputted to the port in question. 

When the interrupt occurs, operation branches to Line No. which 
has been defined beforehand. During the processing routine, the 
COM(n) STOP statement is in the state of being executed and no 
further interrupt will be given, but if there is input in the 
port, such a state will be stored and an interrupt will be ef
fective immediately after operation returns from the interrupt 
processing routine. 

- 97 -



Functions EOF, LOC, and LOF check the state of the input buffer. 
The EOF function gives "-I II when the buffer is empty and gives ( 
"0" when the buffer is not empty. 

1.10.2 Error Processing 

When an error occurs during program execution, BASIC displays an 
error message and suspends execution. If the generated error 
is recoverable, the error is recovered by the error recovery 
processing routine provided at the branching destination of the 
ON ERROR GOTO statement, and the execution of the original pro
gram will be continued. The following statements and system 
variables are provided for error processing: 

ON ERROR GOTO 
RESUME 
ERROR 
ERR 
ERL 

An error which requires program correction or which has been 
caused by an anomaly of hardware cannot be recovered in the 
program. 

(1) Declaring Error Processing Routine 

For performing error recovery processing, first the execution 
commencing address of the error processing routine is specified 
by the ON ERROR GOTO statement. 

Example: ON ERROR GOTO 500 

If an error occurs hereafter, operation proceeds to Line 500. 
This is called an error interrupt. The ON ERROR GOTO statement 
is a sort of declaration statement approving an error interrupt. 
This declaration is released by 

ON ERROR GOTO 0 

or by the execution of the CLEAR command. 

The declaration "ON ERROR GOTO 0," when it is executed in the 
ordinary program, releases the declaration of the error process
ing routine, but when it is executed in the error processing 
routine, it suspends error processing and displays an error 
message. 

An error generated by erroneous keying-in of data during the 
execution of the INPUT statement causes no error interrupt and 

- 98 -



c thus cannot be processed by the error processing routine. At 
this time, a message "? Redo from start" is displayed and the 
machine will wait for keying-in. 

(2) Investigating Error Information 

System variables ERR and ERL are provided to facilitate error 
recovery processing in the error processing routine. 

Variable ERR indicates an error code corresponding to the error 
occurrence. For the meaning of error codes, refer to Appendix 
A. 

Variable ERL indicates Line No. of the line on which an error 
has occurred. When an error occurs in the command mode, 65535 
is assigned. 

By using these two vriables, operation branches to the recovery ' 
processing routine corresponding to the location and type of 
the error which has occurred. When the value of ERL is to be 
examined, write Line No. to the right of the equal sign. Other
wise, the portion at which Line No. is re-assigned by the RENUM 
command will not be corrected. 

Example: IF ERL=20 THEN 520 

(3) Return from Error Processing Routine 

After the error recovery processing is completed and the con
tinued execution of the program has become possible, operation 
returns from the processing routine by executing the RESUME 
statement. 

RESUME (or RESUME 0) 
Execution is resumed starting from the line on 
which the error occurred. 

RESUME NEXT 
Execution is resumed starting from the line next 
to the line on which the error occurred. 

RESUME 100 
Execution is resumed starting from Line 100. 

(4) Error Simulation 

Error generation can be simulated by using the ERROR statement. 

- 99 -



ERROR <error code> 

When anyone of error codes from 0 to 255 is specified in this 
format, an error which corresponds to the code is generated. 
If no error processing routine has been declared, the correspond
ing error message will be displayed and program execution stopped. 

If the error processing routine has been declared, Line No. of 
the line on which this ERROR statement has been written will be 
assigned to ERL, a specified error code will be assigned to ERR, 
and the error processing routine will be executed. 

Example: ERROR 11 
Division by zero 
Ok 

When an error code is undefined, a message "Unprintable error" 
is displayed. An error code which is not used in BASIC can be 
used by the user. 

If a processing routine with respect to the error code defined 
by the user is provided beforehand in the error processing 
routine, specification of this code in the ERROR statement will 
make it possible to execute the user's processing routine, as 
if the BASIC error processing subroutine were called. 

(5) Program Example 

The program shown below examines the size of the specified disk 
file. The name of the file to be examined is keyed-in. The 
error in mis-specification of the file name which is liable to 
occur frequently can be recovered by the provision of an error 
recovery routine. The contents of this error recovery process
ing consists simply of displaying a caution message for making 
it possible to re-input the file name. 

100 ON ERROR GOTO 200 
110 INPUT "FILENAME"; N$ 
120 OPEN "N$" AS 1 
130 PRINT LOF(l) 
140 CLOSE 
150 GOTO 110 
200 IF ERR=53 THEN PRINT "NOT FOUND":RESUME 110 
210 IF ERR=64 THEN PRINT "BAD FILE NAME":RESUME 110 
220 ON ERROR GOTO 0 

Line 100 declares that the error processing routine begins on 
Line 200. Line 110 inputs the name of the file for examining 
the file size; Line 120 opens the file. 

- 100 -



c The LOF function on Line 130 examines the file size. For the 
details of the LOF function, refer to Chapter 3. 

The part from Line 200 onwards constitutes the error process
ing routine. 

Lines 200 and 210 display error messages for 2 types or recovera
ble errors and resume execution starting from the entry of the 
file name on Line 110. Since these 2 errors are liable to occur 
only in the OPEN statement on Line 120, judgement by ERL is 
omitted. 

When other types of errors occur, execution of Line 220 suspends 
the error recovery processing, displays the error message and 
suspends the program run. 

- 101 -



c 

c 

c 







CHAPTER 2 

GW-BASIC COMMANDS AND STATEMENTS 

All of the GW-BASIC commands and statements are described in 
this chapter. Each description is formatted as follows: 

Format: Shows the correct format for the instruction. 
See below for format notation. 

Purpose: Tells what the instruction is used for. 

Remarks: Describes in detail how the instruction is used. 

Example: Shows sample programs or program segments that 
demonstrate the use of the instruction. 

- Format Notation 

Wherever the format for a statement or command is given, the 
following rules apply: 

1. Items in capital letters must be input as shown. 

2. Items in lower case letters enclosed in angle 
brackets « » are to be supplied by the user. 

3. Items in square brackets ([ ]) are optional. 

4. All punctuation except angle b~ackets and square 
brackets (i.e., commas, parentheses, semicolons, 
hyphens, equal signs) must be included where shown. 

5. Items followed by an ellipsis ( ••• ) may be repeated 
any number of times (up to the length of the line). 

- 103 -



2,1 

Format: AUTO [<line number> [,<increment>]] 

Purpose: To generate a line number automatically after every 
carriage return. 

Remarks: AUTO begins numbering at line number and increments 
each subsequent line number by <increment>. The 
default for both values is 10. If <line number> is 
followed by a comma but <increment> is not specified, 
the last increment specified in an AUTO command is 
assumed. 

If AUTO generates a line number that is already being 
used, an asterisk is printed after the number to warn 
the user that any input will replace the existing 
line. However, typing a carriage return immediately 
after the asterisk will save the line and generate 
the next line number. 

AUTO is terminated by typing iCTRLi + ~. The line in 
which iCTRLI + [Q] is typed is not saved. After iCTRLI + 
~ is typed, GW-BASIC returns to command level. 

Example: AUTO 100,50 Generates line numbers 100, 
150, 200 ••••• 

AUTO 

2,2 BEEP 

Generates line numbers 10, 
20, 30, 40 ••••• 

Format: BEEP 

Purpose: To beep the speaker. 

Remarks: The BEEP statement sounds the speaker at 800 Hz tone 
for 1/4 of a second. Both BEEP and PRINT CHR$(7); 
have the same effect. 

Example: 20 IF X < 20 THEN BEEP 

This example specifies a beep when X is greater than 
20. 

- 104 -

( 



r 2.3 BLOAD 

Format: BLOAD <filename> [,<offset>] 

where: 

<filename> is a string expression containing the 
device and filename. 

<offset> is a numeric expression returning an un
signed integer in the range 0 to 65535. 
This is the offset address at which loading 
is to start in the segment declared by the 
last DEF SEG statement. 

Purpose: Load a memory image file into memory. 

Remarks: The BLOAD statement loads data anywhere in user memory. 
Any program that has been assembled and is a memory 
image file can be loaded with this command. A memory 
image file is the final executable form of a file, in 
which all definitions and references have been resolv
ed. BLOAD is often used to load machine language 
programs, but it is not restricted to machine lan
guage; Pascal or FORTRAN programs, for example, can 
be BLOADed after they have been assembled. 

BLOAD observes the following rules: 

1. If device is omitted, the current drive is assumed. 

2. If the device is omitted and the filename is less 
than 1 character or longer than 8 characters, a 
"Bad file name" error is issued and the load is 
aborted. 

3. If the device is specified and the filename is 
omitted, the next memory image file encountered 
on the disk is loaded. 

4. If offset is omitted, the offset specified at 
BSAVE is assumed. Therefore, the file is loaded 
into the same location it was saved from. 

5. If offset is specified, a DEF SEG statement must 
be executed before the BLOAD. When offset is 
given, GW-BASIC assumes the user wants to BLOAD 
at an address other than the one saved. The 
last known DEF SEG address will be used. 

- 105 -



CAUTION 

BLOAD does not perform an address range check. It is 
therefore possible to load a file anywhere in memory. 
The user must be careful not to load over the GW-BASIC 
stack, an GW-BASIC program, or a variable area. 

Example: 10 'Load screen buffer 

NOTE 

20 DEF SEG=&HB800 'Point segment at screen buffer 
30 BLOAD I PICTURE",0 I Load file PCITURE into 
screen buffer 

Note that the DEF SEG statement in Line 20 and the 
offset of 0 in 30 guarantee that the correct address 
will be used. 

The BSAVE example in the next section illustrates how 
PICTURE was saved. 

BLOAD is not restricted to machine language programs. 
Any segment may be specified as the source or target 
for BLOAD by using the DEF SEG statement. This pro
vides a useful way of saving and displaying graphic 
images by allowing the video screen buffer to be read 
or written from disk. 

2.4 BSAVE 

Format: BSAVE <fi1ename>,<offset>,<length> 

where: 

<filename> is a string expression containing the 
device and filename. 

<offset> 

<length> 

is a numeric expression returning an 
unsigned integer in the range 0 to 65535. 
This is the offset address to start saving 
from in the segment declared by the last 
DEF SEG statement. 

is a numeric expression returning an 
unsigned integer in the range 1 to 65535. 
This is the length is bytes of the memory 
image file to be save. 

Purpose: Allows portions of memory to be saved on disk. 

- 106 -

c 



( Remarks: The BSAVE statement allows portions of memory to be 
saved on disk. BSAVE is often used to save machine 
language programs, but is not restricted to machine 
language; for example, Pascal or FORTRAN programs 
that have been assembled can be BSAVED. 

The following rules are observed: 

1. If device is omitted, the current disk is assumed. 

2. If the filename is less than 1 character or longer 
than 8 characters, a "Bad file name" error is 
issued and the save is aborted. 

3. If offset is omitted, a "Bad file name" error is 
issued and the save is aborted. A DEF SEG state
ment must be executed before the BSAVE. The last 
known DEF SEG address will be used for the save. 

4. If length is omitted, a "Bad file name" error is 
issued and the save is aborted. 

Example: 10 'Save the screen buffer 
20 DEF SEG=&HB800 'Point segment at screen buffer 
30 BSAVE II PICTURE II ,0,16384 'Save screen buffer in 
file PICTURE 

In this example, the DEF SEG statement sets the 
segment address as the start of the screen buffer. 
An offset of 0 and length 16384 specifies that the 
entire 16K screen buffer is to be saved. 

2.5 CALL 

Format: CALL <numvar> [«arg 1> [,<arg 2>] ••• )] 

where: 

<numvar> is a numeric variable or value that is the 
offset in memory of the subroutine. The seg
ment value is determined by the DEF SEG 
statement. 

<arg n> are the arguments that are to be passed to 
the subroutine. 

Purpose: To call an machine language subroutine. 

- 107 -



Remarks: The CALL statement is one way to transfer program 
flow to an external subroutine. (See also the USR 
function. ) 

The CALL statement generates the same calling sequence 
used by GW-BASIC compilers. 

Example: 110 MYROUT=&HD000 
120 DEF SEG=&HC000 
130 CALL MYROUT(I,J$,K(0)) 
· · · This example will call a subroutine at COOO:DOOO 

and pass variables I, J$, and array K as parameters. 

2.6 CHAIN 

Format: CHAIN [MERGE] <filespec> [, [<line>] [, [ALL] [,DELETE 
<range>]]] 

where: 

<filespec> is the name of the program that is to be 
chained. 

<line> is the line number or an expression that 
evaluates to a line number in the called 
program where execution is to begin. 
It is the starting point for execution of 
the called program. 
If it is omitted, execution begins at the 
first line. 
<line> is not affected by a RENUM command. 

Purpose: To call a program and pass variables to it from the 
current program. 

Remarks: The COMMON statement may be used to pass variables. 

Example 1: 10 REM This program demonstrates chaining using 
common to pass variables. 
20 REM Save this module on disk as IIPROGl ll 

using the A option. 
30 DIM A$(2),B$(2) 
4~ COMMON A$(),B$() 
50 A$(l )=IIVARIABLES IN COMMON MUST BE ASSIGNED II 
60 A$(2)=IIVALUES BEFORE CHAINING. II 
70 B$(l )=1111: B$(2) =1111 
80 CHAIN IIPROG2 11 
90 PRINT: PRINT B$(l): PRINT: PRINT B$(2): PRINT 
100 END 

- 108 -

( 



c Example 2: 10 REM The statement "DIM A$(2),B$(2)" 
may only be executed once. 
20 REM Hence, it does not appear in this module. 
30 REM Save this module on the disk as IPROG2" 
using the A option. 
40 COMMON A$(),B$() 
50 PRINT: PRINT A$(1);A$(2) 
60 B $ ("I ) = II NOT E HOW THE 0 P T ION 0 F S P E C I FYI N G 
A STARTING LINE NUMBER II 

70 B$(2)="WHEN CHAINING AVOIDS THE DIMENSION 
STATEMENT IN 'PROG1 '." 
80 CHAIN IRPOG1",90 
90 END 

with the ALL option, every variable in the current 
program is passed to the called program. If the ALL 
option is omitted, the current program must contain 
a COMMON statement to list the variables that are 
passed. 

The MERGE option allows a subroutine to be brought 
into the BASIC program as an overlay. That is, a 
MERGE operation is performed with the current program 
and the called program. The called program must be 
an ASCII file if it is to be MERGED. 

After an overlay is brought in, it is usually desirable 
to delete it so that a new overlay may be brought in. 
To do this, use the DELETE option. 

Example 3: 10 REM This program demonstrates chaining using 
the MERGE and ALL options. 
20 REM Save this module on the disk as "MAINPRG". 
30 A$="MAINPRG" 
40 CHAIN MERGE IOVERLAY1",1010,ALL 
50 END 

1000 REM Save this module on the disk as 
IOVRLAY1" using the A optiono 
1010 PRINT A$; II HAS CHAINED TO OVRLAY1." 
1020 A$=IOVRLAYl" 
1030 B$=IOVRLAY2" 
1040 CHAIN MERGE IOVRLAY2",1010,ALL, 
DETELE 1000-1050 
1050 END 

1000 REM Save this module on the disk as 
10VRLAY2" using the A option. 
1010 PRINT A$; II HAS CHAINED TO ";B$:"." 
1020 END 

- 109 -



Note 

The line numbers if <range> are affected by the RENUM 
command. 

The CHAIN statement with MERGE option leaves the 
files open and preserves the current OPTION BASE 
setting. 

If the MERGE option is omitted, CHAIN does not pre
serve variable types or user-defined functions for 
use by the chained program. That is, any DEFINT, 
DEFSNG, DEFDBL, DEFSTR, or DEF FN statements containing 
shared variables must be restated in the chained 
program. 

The CHAIN statement leaves the files open during 
CHAINing. 

When using the MERGE option, user-defined functions 
should be placed before any CHAIN MERGE statements 
in the program. Otherwise, the user-defined functions 
will be undefined after the merge is complete. 

2.7 CIRCLE 

Format: CIRCLE «xcenter>,<ycenter»,<radius>[,<color> 
[,<start>,<end>[,<aspect>]]] 

where: 

<xcenter> is the x coordinate for the center of the 
circle. 

<ycenter> is the y coordinate for the center of the 
circle. 

<radius> is the size of the radius of the circle. 

<color> is the numeric value of the color (0-7) • 

<start> is the start angle in radians. 

<stop> is the stop angle in radians. 

<aspect> is the ratio of the x dimension to the y 
dimension. 

Purpose: To draw a circle or ellipse on the screen. 

Remarks: The CIRCLE statement draws a circle or ellipse with a 
center and radius as indicated by the first of its argu-

- 110 -



( 
ments. The default color is the foreground color. The 
start and end angle parameters are radian arguments 
between -2*PI and 2*PI which allow you to specify 
where drawing of the ellipse will begin and end. 
If the start or end angle is negative, the ellipse 
will be connected to the center point with a line, and 
the angles will be treated as if they were positive 
(Note that this is different than adding 2*PI). 
The start angle may be less than the end angle. 

The aspect ratio describes the ratio of the X radius 
to the Y radius. The default aspect ratio is 90/100 
and will produce a 'round' circle on the standard 
monitor. 

If the aspect ratio is less than one, then the radius 
is given in X-pixels. If it is greater than one, the 
radius is given in Y-pixels. The standard relative 
notation may be used to specify the center point. 

The last point referenced after a circle is drawn is 
the center. 

Example: Draw Pack man in the middle of the screen. 

10 CIRCLE(320,200),10~,7,-.4,-5.5 
20 CIRCLE(300,150), 10,7",1.5 
30 PAINT(300,200),6,7 

2.8 CLEAR 

Format: CLEAR [, [<ds>] [,<stack>]] 

where: 

<ds> is the size of the data segment, which if 
specified, sets the highest location available 
for use by GW-BASIC. 

<stack> sets aside stack space for GW-BASIC. The 
default is 512 bytes or one-eighth of the 
vailable memory, whichever is smaller. 

Purpose: To set all numeric variables to zero, all string 
variables to null, and to close all open files; and, 
optionally, to set the end of memory (size of data 
segment) and the amount of stack space. 

Remarks: CLEAR frees up all memory used for data without 
erasing the program text. After a CLEAR, arrays are 

- III -



undefined; numeric variables have a value of zero; 
string variables have a value of null; and any in
formation set with any DEF statement is lost. 

Restricting the size of the data segment is usually 
done to reserve space for machine language subroutines 
that are to be called by a basic program. Defining 
additional stack space would be useful while PAINTing 
very complex shapes or if very deep nesting of GOSUBs 
or FOR •• NEXT loops are used. 

GW-BASIC allocates string space dynamically. An "Out 
of string space" error occurs only if there is no free 
memory left for GW-BASIC to use. 

If a value of 0 is given for either expression, the 
appropriate default is used. The default stack size 
is 512 bytes, and the default top of memory is the 
current top of memory. The CLEAR statement performs 
the following actions: 

Example: CLEAR 

Closes all files. 
Clears all COMMON and user variables. 
Resets the stack and string space. 
Releases all disk buffers. 

CLEAR ,32768 

CLEAR ,,2000 

CLEAR ,32768,2000 

2,9 CLOSE 

Format: CLOSE [[#]<filenum>[, [#]<filenum>] ••• ] 

where: 

<filenum> is the number used on an OPEN statement. 

Purpose: To conclude I/O to a disk file or device. 

Remarks: The association between a particular file and file 
number terminates upon execution of a CLOSE statement. 
The file may then be reOPENed using the same or a 
different file number; likewise, that file number 
may now be reused to OPEN any file. A CLOSE with no 
arguments closes all open files. 

- 112 -

( 

c 



c A CLOSE for a sequential output file writes the 
final buffer of output. 

The END statement and the NEW command always CLOSE 
all disk files automatically. (STOP does not close 
disk files.) 

Example: 100 CLOSE 1, 3 

2,10 CLS 

Causes the files and devices associated with file 
numbers 1 and 3 to be closed. 

Format CLS 

Purpose: To clear the screen. 

Remarks: The CLS statement clears the text and graphics data 
from the screen. The WIDTH statement will also 
force a screen clear if the new screen mode is 
different from the current screen mode. The screen 
may also be cleared by pressing the "CLEAR SCREEN" 
key. 

Example: 10 CLS ·C1ear the screen 

2,11 COLOR 

Format COLOR [<foreground>] [,<backgrQund>] 

where: 

<foreground> is the number of the color (0-7) that 
the characters will be written with. 
It is also the color that will be used 
as the default by the graphics routines. 

<background> is the number of the color (0-7) that 
the characters will be written on. 

Purpose: To select the colors that will be used to display the 
text and graphics information on the screen. 

Remarks: The COLOR statement selects the foreground and back
ground colors for the text and graphics display. 

- 113 -



The colors (attributes) for the initial palette are 
shown below. 

• For Color Display 

Palette No. Color 

0 Black 

1 Blue 

2 Green 

3 Cyan 

4 Red 

5 Magenta 

6 Yellow 

7 White 

• For Monochrome Display (one V-RAM model) 

Palette No. Attribute 

0 Non-display 

1 Standard 
brightness 

• For Monochrome Display (two V-RAM model) 

Palette No. Attribute 

0 Non-display 

1 High brightness 

2 
Standard brightness 
blinking 

3 Standard brightness 

These colors will be used by the PSET, PRESENT, 
CIRCLE and LINE statement. 

Any parameters outside the numeric ranges specified 
will result in an "Illegal function call" error. In 
this case, previous values are retained. 

Foreground color may be the same as the background 
color, thus making displayed characters invisible. 

- 114 -

( 



( 
Any parameter can be omitted. If a parameter is 
omitted, the previous value is retained. 

The COLOR statement may not end with a comma (,). 
If it does, a "Syntax error" will result. 

Initial values of definitions of palettes in Color 
Display are set at Palette No. 7 for <foreground> and 
Palette No. D for <background>. 

Initial values of definitions of palettes in Monochrome 
Display are set at Palette No. 1 (one V-RAM model) or 
3 (two V-RAM model) for <foreground> and at Palette 
No.D for <background>. 

Example: COLOR 4,6 

2,12 COM(n) 

Format COM(n) ON 
COM(n) OFF 
COM(n) STOP 

where: 

n is the number of the COM channel (1-4) 

Purpose: To enable or disable trapping of communications 
activity on the indicated communications channel. 

Remarks: When an event is ON and if a non-zero line number is 
specified in the ON GOSUB statement, every time GW
BASIC starts a new statement it will check to see if 
the specified event has occurred (e.g., a COM charac
ter has come in). When an event is OFF, no trapping 
takes place, and the event is not remembered even if 
it takes place. 

When a COM(n) STOP is executed, no trapping takes 
place on channel n, but the occurrence of an event is 
remembered so that an immediate trap will take place 
when a COM(n) ON statement is executed. 

When a communications trap is detected on channel n, 
the trap automatically causes a COM(n) STOP for that 
channel, so recursive traps can never occur. A return 
from the trap routine automatically executes an ON 
statement unless an explicit OFF has been performed 
inside the trap routine. 

- 115 -



2,13 

Format 

A line number of zero disables trapping for that 
channel. 

When an error trap takes place, all trapping is 
automatically disabled. 

Event trapping will never occur when GW-BASIC is 
not executing a program. 

A user can use the following statement: 

RETURN <line number> 

to return to the GW-BASIC program at a fixed line 
number while still eliminating the GOSUB entry that 
the trap created. Note that this type of RETURN 
must be used with care. Any other GOSUB, WHILE, or 
FOR that was active at the time of the trap will 
remain active. If the trap comes out of a subroutine~ 
any attempt to continue loops outside the subroutine 
will result in a "NEXT with FOR" error. 

COMMON 

COMMON <variable>[,<variable>] ••• 

Purpose: To pass variables to a CHAINed program. 

Remarks: The COMMON statement is used in conjunction with the 
CHAIN statement. COMMON statements may appear any
where in a program, though it is recommended that 
they appear at the beginning. The same variable 
cannot appear in more than one COMMON statement. 
Array variables are specified by appending "()" to 
the variable name. If all variables are to be 
passed, use CHAIN with the ALL option and omit the 
COMMON statement. 

Example: 100 COMMON A,B,C,D(),G$ 
110 CHAIN IIPROG3 11 ,10 

. 
Array variables used in a COMMON statement must be 
declared in a preceding DIM statement. 

- 116 -

( 

c 



c 2,14 

Format CONT 

purpose: To continue program execution after ICTRLI + [CJ has 
been typed or a STOP or END statement has been 
executed. 

Remarks: Execution resumes at the point where the break 
occurred. If the break occurred after a prompt from 
an INPUT statement, execution continues with the 
reprinting of the prompt ("?" or prompt string). 

CONT is usually used in conjunction with STOP for 
debugging. When execution is stopped, intermediate 
values may be examined and changed using direct mode 
statements. Execution may be resumed with CONT or a 
direct mode GOTO, which resumes execution at a 
specified line number. CONT may be used to continue 
execution after an error has occurred. 

CONT is invalid if the program has been edited during 
the break. 

Example: 1 Q) P R I N T 1 Q) 
20 END 
3Q) PRINT 3Q) 
RUN 

1 Q) 

Ok 
CONT 

30 
Ok 

2,15 DATA 

Format DATA <constant>[,<constant>] •.. 

purpose: To store the numeric and string constants that are 
accessed by the program's READ statement(s). 

Remarks: DATA statements are non-executable and may be placed 
anywhere in the program. A DATA statement may con
tain as many constants as will fit on a line 
(separated by commas). Any number of DATA statements 

may be used in a program. READ statements access 
DATA statements in order (by line number). The data 
contained therein may be thought of as one continuous 
list of items, regardless of how many items are on a 

- 117 -



line or where the lines are placed in the program. 

Constant may be numeric constants in any format; 
i.e., fixed-point, floating-point, or integer. (No 
numeric expressions are allowed in the list.) String 
constants in DATA statements must be surrounded by 
double quotation marks only if they contain commas, 
colons, or significant leading or trailing spaces. 
Otherwise, quotation marks are not needed. 

The variable type (numeric or string) given in the 
READ statement must agree with the corresponding 
constant in the DATA statement. 

DATA statements may be reread from the beginning by 
use of the RESTORE statement. 

Example: See "READ" Statement 

2 116 DEF FN 

Format DEF FN<name> [«arg 1> [<arg 2>] ••• )]=<definition> 

where: 

<name> 

<arg n> 

must be a legal variable name. This 
name, preceded by FN, becomes the name 
of the function. 

is a list of variable names in the func
tion definition that are to be replaced 
when the function is called. The items 
in the list are separated by commas. 

<definition> is an expression that performs the 
operation of the function. It is 
limited to one line. 

Purpose: To define and name a function that is written by the 
user. 

Remarks: Variable names that appear in this expression serve 
only to define the function; they do not affect pro
gram variables that have the same name. A varaible 
name used in a function definition mayor may not ap
pear in the parameter list. If it does, the value of 
the parameter is supplied when the function is called. 
Otherwise, the current value of the variable is used. 

- 118 -

( 



c 

Example: 

The variables in the parameter list represent, on a 
one-to-one basis, the argument variables or values 
that will be given in the function call. 

This statement may define either numeric or string 
functions. If a type is specified in the function 
name, the value of the expression is forced to that 
type before it is returned to the calling statement. 
If a type is specified in the function name and the 
argument type does not match, a "Type mismatch" error 
occurs. 

A DEF FN statement must be executed before the func
tion it defines may be called. If a function is call
ed before it has been defined, an "Undefined user 
function" error occurs. DEF FN is illegal in the 
direct mode. 

. 
410 DEF FNAB(X,Y)=X A 3/Y A 2 
420 T=FNAB(I,J) 

Line 410 defines the function FNAB. 
The function is called in line 420. 

Format DEF<type> <letter> [-<letter>] [,<letter> [-<letter>]] 

where: 

<type> is INT, SNG, DBL, or STR 

Purpose: To declare varaible types as integer, single preci
sion, double precision, or string. 

Remarks: Any variable names beginning with the letter(s) 
specified will be considered the type of variable 
specified in the type portion of the statement. 
However, a type declaration character (%,1,# or $) 
always takes precedence over a DEF <type> statement. 

If no type declaration statements are enqountered, 
GW-BASIC assumes all variables without declaration 
characters are single precision variables. 

- 119 -



Example: 10 OEFOBL L-P All variables beginning with the 
letters L, M, N, 0, and P will be 
double precision variables. 

10 OEFSTR A All variables beginning with the 
letter A will be string variables. 

10 OEFINT I-N,W-Z All variable beginning with the 
letters I, J, K, L, M, N, W, X, Y, 
Z will be integer variables. 

2.18 DEF SEG 

Format DEF SEG[=<address>] 

where: 

<address> is a numeric expression returning an 
unsigned integer in the range 0 to 65535. 

Purpose: To define the current "segment" of storage. 

Remarks: The address specified is saved for use as the segment 
required by the PEEK, POKE, and CALL statements or 
the USR function. Assigns the current value to be 
used by a subsequent CALL or USR function call. 

Any value outside the address range will result in 
an "Illegal function call" error. The previous value 
will be retained. 

If the address is omitted, the segment to be used is 
set to the GW-BASIC data segment (DS). This is the 
default value. 

If the address is given, it should be a value based 
on a l6-byte boundary. For the PEEK, POKE, or CALL 
statements, or for the USR function, the value is 
shifted left 4 bits to form the Code Segment address 
for the subsequent call instruction. GW-BASIC does 
not perform any checking to assure that the resulting 
segment + offset value is valid. 

Example: 10 OEF SEG=&HB800 ISet segment to screen buffer 
20 OEF SEG 'Restore segment to GW-BASIC OS 

Note DEF and SEG must be separated by a space. 

- 120 -

( 



2.19 DEF USR 

Format DEF USR[<digit>]=<offset> 

where: 

<digit> is any digit from 0 to 9. The digit cor
responds to the number of the USR routine 
whose address is being specified. If digit 
is omitted, DEF USRO is assumed. 

<offset> is the starting address of the USR routine. 
See "Machine Language Subroutines" section 
of this manual. 

Purpose: To specify the starting address of a machine 
language subroutine that will be called via the USR 
function. 

Remarks: The value of offset is added to the current segment 
value to obtain the actual starting address of the 
USR routine. See the DEF SEG statement in this 
chapter. 

Example: 

Any number of DEF USR statements may appear in a pro
gram to redefine subroutine starting addresses, thus 
allowing access to as many subroutines as necessary. 

190 DEF SEG =&H4000 
200 DEF USR0=&H5000 
210 X=USR0(Y A 2/2.89) 

This example will call absolute memory location 
45000H. 

2.20 DELETE 

Format DELETE [<first>] [-<last>] 

where: 

<first> is the first line number to be deleted. 

<last> is the last line number to be deleted. 

Purpose: To delete program lines. 

- 121 -



Remarks: GW-BASIC always returns to command level after a 
DELETE is executed. If the first or last line 
specified does not exist, an "Illegal function call" 
error occurs. 

A period (.) may be used in place of the line number 
to indicate the current line. 

Example: DELETE 40 Deletes line 40. 

2,21 DIM 

DELETE 40-1~0 Deletes lines 40 through 100, 
inclusive. 

DELETE -40 Deletes all lines up to and including 
line 40. 

Format DIM <variable> «subscripts» [,<variable> 
«subscripts»] ••• 

where: 

<variable> is a legal variable name. 

<subscripts> are the maximum number of elements for 
each dimension of the array. There can 
be up to 255 subscripts but the maximum 
size of the array cannot exceed the 
amount of memory available. 

Purpose: To specify the maximum values for array variable 
subscripts and allocate storage accordingly. 

Remarks: If an array variable name is used without a DIM state
ment, the maximum value of the array's subscript(s) is 
assumed to be 10. If a subscript is used that is 
greater than the maximum specified, a "Subscript out 
of range" error occurs. The minimum value for a sub
script is always 0, unless otherwise specified with 
the OPTION BASE statement. 

The DIM statement sets all the elements of numeric 
arrays to an initial value of zero. String arrays 
elements are all variable length and are initialized 
to null (0 length). 

- 122 -

( 

c 



( 
Example: 10 DIM A(20) 

20 FOR 1=0 TO 20 
30 READ A(I) 
40 NEXT I 

2.22 DRAW 

Format DRAW <string> 

where: 

<string> is one of the subcommands described below. 

Purpose: Draws lines as indicated by the subcommands described 
below. 

Remarks: The DRAW statement combines many of the capabilities 
of the other graphics statements into an easy to use 
object definition language called Graphics Macro 
Language. A GML command is a single character 
within a string, optionally followed by one or more 
arguments. 

Each of the following subcommands begins movement 
from the "current graphics position." This is usually 
the coordinate of the last graphics point plotted 
with another GML command, LINE, or PSET. The current 
position defaults to the center of the screen when a 
program is run. 

The following commands move o~e unit if no argument 
is supplied. 

U [n] Move up (scale factor * n) points 
D [n] Move down 
L [n] Move left 
R [n] Move right 
E [n] Move diagonally up and right 
F [n] Move diagonally up and left 
G [n] Move diagonally down and left 
H [n] Move diagonally down and right 

M x ,y move absolute or relative. If x is preceded 
by a "+" or "-", x and yare added to the current 
graphics position and connected with the current 
position by a line. otherwise, a line is drawn to 
point x, y from the current cursor position. 

- 123 -



The following prefix commands may preceded any of 
the movement commands: 

B 

N 

An 

Cn 

Sn 

Move but don't plot any points. 

Move but return to original position when 
done. 

set angle n. n may range from 0 to 3, 
where 0 is 0 degrees, 1 is 90, 2 is 180, 
and 3 is 270. Figures rotated 90 or 270 
degrees are scaled so they will appear the 
same size as with 0 or 180 degrees on a 
monitor screen with the standard aspect 
ratio of 4/3. 

Set foreground color n. n may range from 0 to 7. 

Set scale factor. n may range from 1 to 
255. The sGale factor multiplied by the 
distances given with U, D, L, R, or 
relative M commands gives the actual dis
tance traveled. 

X<string>;Execute substring (not supported by GW
BASIC Compiler). This powerful command al
lows you to execute a second substring from 
a string, much like GOSUB in GW-BASIC. You 
can have one string execute another, which 
executes another, and so on. 

Numeric arguments can be constants like 
"123" or "=variable" where variable is the 
name of a variable. 

Example: The following statements will draw a blue diamond 
with green lines emanating from the vertices. 

10 " CLS 
2(i) A$ = II X B$ ; X C$" 
30 B$ = ICl;F10" 
40 C$ = IC2;ND10" 
50 FOR I = 0 TO 3 
60 DRAW "A=I ; XA$;" 
70 NEXT 

- 124 -

( 



c 2,23 

Format EDIT <line> 

where: 

<line> is the line number of a existing program line. 

Purpose: To display a line for editing by the screen editor. 

Remarks: The EDIT statement is used with the Full Screen 
Editor to display a specified line and position the 
cursor at the beginning of that line. The line may 
then be modified using the subcommands described in 
the section on the "Full Screen Editor." If there is 
no such line, an "Undefined line number" error re
sults. 

If you have just entered a line and wish to go back 
and edit it, the command "EDIT ." will enter the Full 
Screen Editor at the current line. "." refers to 
the last line referenced by an EDIT statement, LIST 
statement, or error message. 

Example: EDIT 20 

2.24 END 

displays Line 20 and places the cursor at the beginning 
of the line. The Full Screen Editor subcommands may 
now be used to edit the line. 

20 PRINT IIADDRESS: II 
EDIT • 

displays Line 20 so that the line can be edited by the 
Full Screen Editor. 

Format END 

Purpose: To terminate program execution, close all files, and 
return to command level. 

Remarks: END statements may be placed anywhere in the program 
to terminate execution. Unlike the STOP statement, 
END closes all open files or devices, and END does 
not cause a "Break in line nnnnn" message to be 
printed. An END statement at the end of a program is 
optional. GW-BASIC always returns to command level 
after an END is executed. 

- 125 -



Example: 520 IF K=1000 THEN END ELSE GOTO 20 

2.25 ERASE 

Format ERASE <arrayname> [,<arrayname>] ••• 

where: 

<arrayname> is the name of an existing array. 

Purpose: To eliminate arrays from a program. 

Remarks: Arrays may be redimensioned after they are ERASEd, 
or the previously allocated array space in memory 
may be used for other purposes. If an attempt is 
made to redimension an array without first ERASEing 
it, a "Duplicate definition" error will occur. 

If the array specified in <arrayname> does not exist, 
an "Illegal function call" error will occur. 

Example: 10 A=5 : A(l)=6 
20 ERASE A 
30 DIM A(4,5) 
40 PRINT A 
50 END 
RUN 

5 
Ok 

2.26 ERROR 

Format ERROR <n> 

where: 

<n> is the error code to simulate. 

Purpose: To simulate the occurrence of a BASIC error, or to 
allow error codes to be defined by the user. 

Remarks: The value of <n> must be greater than 0 and less than 
255. If the value of <n> equals an error code al
ready in use by BASIC, the ERROR statement will simu
late the occurrence of that error and the correspond
ing error message will be printed. 

- 126 -

( 

c 



c To define your own error code, use a value that is 
greater than any used by GW-BASIC error codes. (It 
is preferable to use the highest available values, so 
compatibility may be maintained when more error codes 
are added to GW-BASIC.) This user-defined error code 
may then be conveniently handled in an error handling 
routine. 

Execution of an ERROR statement for which there is no 
error handling routine causes an error message to be 
printed and .execution to halt. If an ERROR statement 
specifies a code for which no error message has been 
defined, GW-BASIC will use the "Unprintable error" 
error message. 

Example: LIST 

Example: 

10 S=10 
20 T=5 
30 ERROR S+T 
40 END 
Ok 
RUN 
String too long in line 30 

Ok 
ERROR 15 
String too long 
Ok 

. 

(You type this line.) 
(BASIC types this line.) 

110 ON ERROR GOTO 400 
120 INPUT "WHAT IS YOUR BET";B 
13~ IF B=5000 THEN ERROR 210 
. 

401» IF ERR=210 THEN PRINT "HOUSE LIMIT IS $5000" 
410 IF ERL=13m THEN RESUME 120 

- 127 -



2.27 FIELD 

Format FIELD [#] <file number>,<field width> AS <string 
variable> [,<field width> AS <string variable>, ••• ] 

where: 

<file number> 

<field width> 

is the number under which the file 
was OPENed. 

is the number of characters to be 
allocated to <string variable>. 

<string variable> is a string variable which will be 
used for random file access. 

purpose: To allocate space for variables in a random file 
buffer. 

Remarks: To get data out of a random buffer after a GET or to 
enter data before a PUT, a FIELD statement must have 
been executed. 

Example: 

Note 

For example, 

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$ 

allocates the first 20 positions (bytes) in the 
random file buffer to the string variable N$, the 
next 10 positions to ID$, and the next 40 positions 
to ADD$. FIELD does not place any data in the 
random file buffer. (See LSET/RSET and GET.) 

The total number of bytes allocated in a FIELD state
ment must not exceed the record length that was 
specified when the file was OPENed. Otherwise, a 
"Field overflow" error occurs. (The default record 
length is 128.) 

Any number of FIELD statements may be executed for 
the same file, and all FIELD statements that have 
been executed are in effect at the same time. 

10 OPEN IR I ,#1,IRANDFILE.TST",25 
20 FIELD#1,10 AS A$, 15 AS B$ 

Do not use a FIELDed varaible name in an INPUT or 
LET statement. Once a variable name is FIELDed, it 
points to the correct place in the random file buffer. 

- 128 -

( 

c 



c 

2.28 

Format 

If a subsequent INPUT or LET statement with that 
variable name is executed, the variable's pointer is 
moved to string space. 

FILES 

FILES [<filespec>] 

where: 

<filespec> is a string expression for the file 
specification. 

Purpose: To display the names of files residing on a disk. 

Remarks: If <filespec> is omitted, all the files on the cur
rently selected drive will be listed. 

All files matching the filename are displayed. The 
filename may contain question mark (?). A question 
mark will match any character in the name or exten
sion. An asterisk (*) as the first character of the 
name or extension will match any name or any extension. 

If a drive is specified as part 
files which match the specified 
disk in that drive are listed. 
current drive is used. 

Example: FILES 

of <filespec>, then 
filename on the 
Otherwise, the 

This will display all files on the current drive. 

FILES "*.BAS" 

This will display all files with an extension of .BAS 
on the current drive. 

FILES IIB:*.*" 

This will display all files on drive B. 

- 129 -



2,29 FOR, "NEXT 

Format FOR <variab1e>=x TO y [STEP Z] 

NEXT [<variable>] [,<variable> •.• ] 

where: 

<variable> is used as a counter. 

x, y and z are numeric expressions. 

Purpose: To allow a series of instructions to be performed in 
a loop a given number of times. 

Remarks: The first numeric expression (x) is the initial value 
of the counter. The second numeric expression (y) is 
the final value of the counter. The program lines 
following the FOR statement are executed until the 
NEXT statement is encountered. Then the counter is 
incremented by the amount specified by STEP. A check 
is performed to see if the value of the counter is 
now greater than the final value (y). If it is not 
greater, BASIC branches back to the statement after 
the FOR statement and the process is repeated. If 
it is greater, execution continues with the statement C 
following the NEXT statement. This is a FOR ••• NEXT 
loop. If STEP is not specified, the increment is 
assumed to be one. If STEP is negative, the final 
value of the counter is set to be less than the initial 
value. The counter is decremented each time through 
the loop, and the loop is executed until the counter 
is less than the final value. 

The body of the loop is skipped if the initial value 
of the loop times the sign of the step exceeds the 
final value times the sign of the step. 

Nested Loops 

FOR ••• NEXT loops may be nested, that is, a FOR ••• NEXT 
loop may be placed within the context of another FOR 
•.• NEXT loop. When loops are nested, each loop must 
have a unique variable name as its counter. The NEXT 
statement for the inside loop must appear before that 
for the outside loop. If nested loops have the same 
end point, a single NEXT statement may be used for 
all of them. 

The variab1e(s) in the NEXT statement may be omitted, 
in which case the NEXT statement will match the most 

- 130 -



c recent FOR statement. If a NEXT statement is encoun
tered before its corresponding FOR statement, a 
"NEXT without FOR" error message is issued and execu
tion is terminated. 

Example 1: 10 K=10 
20 FOR 1=1 TO K STEP 2 
30 PRINT I; 
40 K=K+10 
50 PRINT K 
60 NEXT 
RUN 

1 20 
3 30 
5 40 
7 50 
9 60 

Ok 

Example 2: 1 0 J = 0 

Example 3: 

20 FOR 1=1 TO J 
30 PRINT I 
40 NEXT I 

In this example, the loop does not execute because the 
initial value of the loop exceeds the final value. 

10 1=5 
20 FOR 1=1 TO 1+5 
30 PRINT I ; 
40 NEXT 
RUN 

1 2 3 4 5 6 7 8 9 10 
Ok 

In this example, the loop executes ten times. The 
final value for the loop variable is always set before 
the initial value is set. 

2,30 GET (Files) 

Format GET [#]<file number>I,~record number>] 

where: 

<file number> is the number under which the files 
was OPENed. 

- 131 -



<record number> is the number of the reocrd to be 
read in the range 1 to 32767. 

Purpose: To read a record from a random file into a random buf
fer. 

Remarks: If <record number> is omitted, the next record (after 
the last GET) is read into the buffer. 

After a GET statement, INPUT# and LINE INPUT# may be 
done to read characters from the random file buffer. 

GET may also be used for communications files. In 
this case, <record number> is the number of bytes to 
read from the communication buffer. 

Example: 1 0 OPE N , II R II , # 1 , II ADD RES S II , 5 III 

2.31 

Format 

20 FIELD #1, 20 AS NAME$,30 AS ADDR$ 
30 GET #1 
40 PRINT NAME$, ADDR$ 

GET(Graphics) 

GET (xl,yl)-(x2,y2) ,<array> 

where: 

xn is the x coordinate (0-639) 

yn is the y coordinate (0-399) 

<array> is the name of the array to transfer the screen 
image to. 

Purpose: To read a block of points from an area of the screen 
into an array. 

Remarks: The PUT and GET statements are used to transfer 
graphics images to and from the screen. PUT and GET 
make possible animation and high-speed object motion 
in either graphics mode. 

The GET statement transfers the screen image bounded 
by the rectangle described by the specified points 
into the array. The rectangle is defined the same 
way as the rectangle drawn by the LINE statement 
using the ",B" option. 

The array is used simply as a place to hold the image 
and can be of any type except string. It must be 

- 132 -

c 



( dimensioned large enough to hold the entire image. 
The contents of the array after a GET will be meaning
less when interpreted directly (unless the array is 
of integer type - see below) 

1. Animation of an object is usually performed as 
outlined below. 

2. PUT the object(s) on the screen. 

3. Recalculate the new position of the object(s). 

4. PUT the object(s) on the screen a second time 
at the old location(s) to remove the old image(s). 

5. Go to step one, this time PUTting the object(s) 
at the new location. 

Movement done this way will leave the background 
unchanged. Flicker can be cut down by minimizing 
the time between steps 4 and 1, and by making sure 
that there is enough time delay between 1 and 3. 
If more than one object is being animated, every 
object should be processed at once, one step at a 
time. 

The storage format in the array is as follows: 
The data for each row of pixels is left justified on 
a byte boundary, so if there are less than a multiple 
of 8 bits stored, the rest of the byte will be filled 
out with zeros. The required array size in bytes 
is: 

4+INT«x+7)/8)*y*3 

Remember that BASIC assigns storage to arrays as 
follows: 

2 for integer 
4 for single precision 
8 for double precision 

It is possible to examine the x and y dimensions and 
even the data itself if an integer array is used. 

The information from the screen is stored in the array 
as follows: 

1. 2 bytes giving the x dimension in bits 

- 133 -



2. 2 bytes giving the y dimension in bits 

3. the data itself 

The x dimension is in bytes 0 1 of the array, and 
the y dimension is found in bytes 2 3. It must be 
remembered, however, that integers are stored low 
byte first, then high byte, but the data is trans
ferred high byte first (leftmost) and then low byte. 

Example: 4+INT ( (x+7) 18) *y* 3 say you want to GET a 10 by 12 
pixel image into an integer array. The number of 
bytes required is 4+INT((10+7)/8)*12*3. So, you 
would need an integer array with at least 38 
elements. 

1 0 DIM OAT % ( 38 ) 

120 GET (O,0)-(9,11),OAT% 

2,32 GOSUB , 1 ,RETURN 

Format GOSUB <line number> 

RETURN 

where: 

<line number> is the first line of the subroutine. 

Purpose: To branch to and return from a subroutine. 

Remarks: A subroutine may be called any number of times in a 
program, and a subroutine may be called from within 
another subroutine. Such nesting of subroutines is 
limited only by available memory. 

The RETURN statement(s) in a subroutine cause BASIC 
to branch back to the statement following the most 
recent GOSUB statement. A subroutine may contain 
more than one RETURN statement, should logic dictate 
a return at different points in the subroutine. 
Subroutines may appear anywhere in the program, but 
it is recommended that the subroutine be readily 
distinguishable from the main program. To prevent 
inadvertant entry into the subroutine, it may be 
preceded by a STOP, END, or GOTO statement that 
directs program control around the subroutine. 

- 134 -



( 
Example: 10 GOSUB 40 

20 PRINT IIBACK FROM SUBROUTINE II 
30 EN D 
40 PRINT IISUBROUTINE II ; 
50 PRINT II INII; 
60 PRINT II PROGRESS II 
70 RETURN 
RUN 
SUBROUTINE IN PROGRESS 
BACK FROM SUBROUTINE 
Ok 

2.33 GOTO 

Format GOTO <line number> 

Purpose: To branch unconditionally out of the normal program 
sequence to a specified line number. 

Remarks: If <line number> is an executable statement, that 
statement and those following are executed. If it is 
a nonexecutable statement, execution proceeds at the 
first executable statement encountered after <line 
number>. 

Example: LIST 
10 READ R 
20 PRINT IIR :;II;R, 
30 A :; 3.14*R A 2 
40 PRINT IIAREA :;II;A 
50 GOTO 10 
60 DATA 5,7,12 
Ok 
RUN 
R = 5 
R :; 7 
R :; 12 

AREA 
AREA 
AREA 

?Out of data 
Ok 

in 10 

= 78.5 
:; 153.86 
:; 452.16 

2.34 IF ... THEN ... ELSE, IF ... GOTO ... ELSE 

Format IF <expression> [ ,] THEN <clause> [ [, ] ELSE<clause> ] 

IF <expression> [,] GOTO <line number> [ [,] ELSE<clause>] 

- 135 -



where: 

<clause> may be a BASIC statement or sequence of 
statements, or it may be simply the number 
of a line to branch to. 

Purpose: To make a decision regarding program flow based on 
the result returned by an expression. 

Remarks: If the result of <expression> is not zero, the THEN 
or GOTO clause is executed. THEN may be followed by 
either a line number for branching or one or more 
statements to be executed. GOTO is always followe.d 
by a line number. If the result of <expression> is 
zero, the THEN or GO TO clause is ignored and the 

Note 

ELSE clause, if present, is executed. Execution con
tinues with the next executable statement. A comma 
is allowed before THEN. 

Nesting of IF Statements 

IF ••• THEN ••• ELSE statements may be nested. 
is limited only by the length of the line. 
example, 

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X 

Nesting 
For 

THEN PRINT "LESS THAN" ELSE PRINT "EQUAL" 

is a legal statement. If the statement does not con
tain the same number of ELSE and THEN clauses, each 
ELSE is matched with the closest unmatched THEN. For 
example, 

IF A=B THEN IF B=C THEN PRINT "A=C" 
ELSE PRINT "A<>C" 

will not print "A<>C" when A<>B. 

If an IF ••• THEN statement is followed by a line number 
in the direct mode, an "Undefined line" error results 
unless a statement with the specified line number had 
previously been entered in the indirect mode. 

When using IF to test equality for a value that is 
the result of a floating point computation, remember 
that the internal representation of the value may not 
be exact. Therefore, the test should be against the 
range over which the accuracy of the value may vary. 
For example, to test a computed variable A against 
the value 1.0, use: 

IF ABS (A-l.0)<1.OE-6 THEN •.• 

This test returns true if the value of A is 1.0 with 
a relative error of less than 1.OE-6. 

- 136 -

( 



( 
Example 1: 200 IF I THEN GET#l,I 

This statement GETs record number I if I is not zero. 

Example 2: 100 IF(I<20) and (I>10) THEN D8=1983-1 :GOTO 300 
110 PRINT "OUT OF RANGE" 

In this example, a test determines if I is greater 
than 10 and less than 20. If I is in this range, DB 
is calculated and execution branches to line 300. 
If I is not in this range, execution continues with 
line 110. 

Example 3: 210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$ 

This statement causes printed output to go either 
to the screen or the printer, depending on the 
value of a variable (IOFLAG). If IOFLAG is zero, 
output goes to the printer, otherwise output 
goes to the screen. 

2,35 INPUT 

Format INPUT [ ;] [< "promt string">;] <variable> [, <variable> ] ••. 

Purpose: To allow input from the terminal during program 
execution. 

Remarks: When an INPUT statement is encountered, program ex
ecution pauses and a question mark is printed to 
indicate the program is waiting for data. If <"prompt 
string"> is included, the string is printed before 
the question mark. The required data is then entered 
at the terminal. 

A comma may be used instead of a semicolon after the 
prompt string to suppress the question mark. For 
example, the statement INPUT "ENTER BIRTHDAY",B$ 
will print the prompt with no question mark. 

If INPUT is immediately followed by a semicolon, then 
the carriage return typed by the user to input data 
does not echo a carriage return/line feed sequence. 

The data that is entered is assigned to the variable(s) 
given in <variable list>. The number of data items 
supplied must be the same as the number of varaibles 
in the list. Data items are separated by commas. 

- 137 -



The variable names in the list may be numeric or 
string variable names (including subscripted variables) • 
The type of each data item that is input must agree 
with the type specified by the variable name. (strings 
input to an INPUT statement need not be surrounded by 
quotation marks.) 

Responding to INPUT with too many or too few items, 
or with the wrong type of value (numeric instead of 
string, etc.) causes the message "?Redo from start" 
to be printed. No assignment of input values is made 
until an acceptable response is given. 

Example 1: 10 IN P UT 
20 PRINT 
30 EN D 
RUN 

X 
X;"SQUARED IS";X"2 

Example 2: 

? 5 (The 5 was typed in by the user 
in response to the question mark) 

5 SQUARED IS 25 
Ok 

10 PI=3.14 
20 INPUT "WHAT IS THE RADIUS";R 
30 A=PI*R"2 
40 PRINT "THE AREA OF THE CIRCLE IS" ; A 
50 PRINT 
60 GOTO 20 
Ok 
RUN 
WHAT IS THE RADIUS? 7.4 (User types 7.4) 
THE AREA OF THE CIRCLE IS 171.946 
Ok 

2.36 INPUT# 

Format INPUT#<file number>,<variable>[,<variable>] ••• 

where: 

<file number> is the number used when the file was 
OPENed for input. 

<variable> is the name of a variable that will 
have an item in the file assigned to 
it. 

Purpose: To read data items from a sequential disk file and 
assign them to program variables. 

- 138 -

C 



c Remarks: The sequential file may reside on disk, if may be 
a sequential data stream from a communications 
adapter, or it may be the keyboard (KYBD:). 

The type of data in the file must match the type 
specified by the variable name. Unlike INPUT, no 
question mark is printed with INPUT#. 

The data items in the file should appear just as they 
would if data were being typed in response to an INPUT 
statement. with numeric values, leading spaces, car
riage returns and line feeds are ignored. The first 
character encountered that is not a space, carriage 
return or line feed is assumed to be the start of a 
number. The number terminates on a space, carriage 
return, line feed or comma. 

If BASIC is scanning the sequential data file for a 
string item, leading spaces, carriage returns and line 
feeds are also ignored. The first character en
countered that is not a space, carriage return, or 
line feed is assumed to be the start of a string 
item. If this first character is a quotation mark 
("), the string item will consist of all characters 
read between the first quotation mark and the second. 
Thus, a quoted string may not contain a quotation 
mark as a character. If the first character of the 
string is not a quotation mark, the string is an 
unquoted string, and will terminate on a comma, car
riage or line feed (or after 255 characters have been 
read). If end of file is reached when a numeric or 
string item is being INPUT,the item is terminated. 

Example: 1 0 0 PEN II I II , # 1 , II ADD RES 5 II 
20 INPUT#l,COD$,ADDR$,TEL$,NAM$ 
30 PRINT IICODE II ,COD$ . 
40 PRINT IIADDRESSII,ADDR$ 
50 PRINT IITELEPHONEII,TEL$ 
60 PRINT IINAMEII,NAM$ 
70 END 

2,37 KEY 

Format KEY n,x$ 
KEY LIST 
KEY ON 
KEY OFF 

- 139 -



where: 

n is the function key number (1-12) 

x$ is the text assigned to the specified key. 

Purpose: Assigns softkey values to function keys and displays 
the values. 

Remarks: The KEY statement allows function keys to be 
designated for special "softkey" functions. Each 
of the twelve function keys may be assigned a 15-
byte string which, when that key is pressed, will be 
input to GW-BASIC. 

Initially, the softkeys are assigned the following 
strings: 

Fl - LIST F7 - TRON.J 
F2 - RUN-1 F8 - TROFF.J 
F3 - LOAD" F9 - LLIST 
F4 - SAVE" F10- EDIT 
F5 - CONT-1 Fll- FILES .J 
F6 - ,"LPT1:"-1 F12- CHR$( 

Once softkeys have been designated, they can be dis
played with the KEY ON, KEY OFF, and KEY LIST state
ments. 

KEY ON causes the Soft Key values to be displayed on 
the 25th line on the CRT screen. When the screen 
width is 40 charaters, four of the twelve softkeys 
are displayed; when the width is 80, eight softkeys 
are displayed. In either screen width, only the 
first 7 characters of each key are displayed. 

KEY OFF erases the Soft Key display from the 25th 
line, making that line available for program use. 
It does not disable the function keys. OFF is the 
default state for the Soft Key display. 

KEY LIST displays all twelve softkey values on the 
screen, with all 15 characters of each key displayed. 

If the function key number is not in the range 1-12, 
an "Illegal function call" error is produced, and 
the previous key string expression is retained. 

Assigning a null string (string of length 0) to a 
softkey disables the function key as a softkey. 

When a softkey is assigned, the INKEY$ function 
returns one character of the softkey string per 
invocation. 

- 140 -

( 



c Example: 50 KEY ON 'Displays the softkey on 25th line 
60 KEY OFF' Erases softkey display 
70 KEY 1,IMENU"+CHR$(13) , Assigns the string 
"MENU" followed by a carriage return 
to softkey 1. 

Such assignments might be used to speed data 
entry. 

80 KEY 1,"" 'Di sabl es softkey 1 

The following routine initializes the first 5 
softkeys: 

10 KEY OFF 'Turns off key display during 
initialization 

20 DATA KEY1,KEY2,KEY3,KEY4,KEY5 
30 FOR 1=1 TO 5 
40 READ SOFTKEY$(1) 
50 KEY 1,SOFTKEY$(1) 
60 NEXT I 
70 KEY ON 'Displays new softkeys 

2.38 KEY(n) 

Format KEY(n) ON 
KEY(n) OFF 
KEY(n) STOP 

where: 

n is the key number (1-16). 

Purpose: To enable or disable trapping of the specified key in 
a BASIC program. 

Remarks: When a KEY(n) ON statement has been executed and a 
non-zero line number is specified, every time GW-BASIC 
starts a new statement it will check to see if the 
specified event has occurred (e.g., a key has been 
depressed) • 

When a OFF, no trapping takes place, and the event is 
not remembered even if it takes place. 

When a STOP is executed, no trapping takes place, but 
the occurrence of an event is remembered so that an 
immediate trap will take place when a ON statement is 
executed. 

- 141 -



Example: 

When a trap is detected, the trap automatically causes ( 
a STOP, so recursive traps can never occur. A return 
from the trap routine automatically executes an ON 
statement unless an explicit OFF has been performed 
inside the trap routine. 

A line number of zero disables trapping. 

. When an error trap takes place, all trapping is 
automatically disabled. 

Event trapping will never occur when GW-BASIC is not 
executing a program. 

A user can use the following statement: 

RETURN <line number> 

to return to the GW-BASIC program at a fixed line 
number while still eliminating the GOSUB entry that 
the trap created. Note that this type of RETURN 
must be used with care. Any other GOSUB, WHILE, or 
FOR that was active at the time of the trap will 
remain active. 
IF the trap comes out of a subroutine, any attempt 
to continue loops outside the subroutine will result 
in a "NEXT without FOR" error. 

10 ON KEY(l) GOSUB 90 
20 KEY(l) ON 
30 CLS 
40 R=RND(1)*8 
50l C=INT(R) 
60 COLOR C 
70l M=R*20:IF M<32 THEN 40 EL~E PRINT CHR$(M); 
80 GOTO 40 
90 IINTERRUPT ROUTINE 
100 CLS 
110 FOR 1=1 TO 23 
120 PRINT SPC(I*2);IICANON AS-100 11 

130 NEXT I 
140 CLS 
150 RET U RN 

- 142 -



( 2.39 KILL 

Format KILL <filename> 

purpose: To delete a file from disk. 

Remarks: If a KILL statement is given for a file that is 
currently OPEN, a "File already open" error occurs. 

KILL is used for all types of disk files: program 
files, random data files and sequential data files. 

Example: 200 K ILL II DATA 111 

2.40 LET 

Format [LET] <varaible>=<expression> 

Purpose: To assign the value of an expression to a variable. 

Remarks: Notice the word LET is optional, i.e., the equal sign 
is sufficient when assigning an expression to a 
variable name. 

Example: 110 LET D=12 
120 LET E=12"2 
130 LET F=12"4 
140 LET SUM=D+E+F 

or 

110 D=12 
120 E=12"2 
130 F=12"4 
140 SUM=D+E+F 

- 143 -



2.41 

Format LINE [[STEP] (Xl'Yl)]-[STEP] (x2'Y2) [[,[<color>] [,B[F]] 

where: 

xn are the horizontal coordinates in the range 
of ° to 639. 

yn are the vertical coordinates in the range of ° to 399. 

(xn,yn) describes a point on the screen. 
(0,0) is the upper left hand corner of the 
screen. 

<color> is the numeric (0-7) representation of the 
desired color that the line (box) will be 
drawn with. 

B is the optional box parameter. 

F is the optional box fill parameter. 

Purpose: To draw a line or box on the screen. 

Remarks: LINE is one of the most powerful graphics statement. 
It allows a group of pixels to be controlled with a 
single statement. 

The simplest form of line is: 

LINE -(x2,y2) 

This will draw from the last point drawn to the point 
(x2,y2) using the foreground color. 

We can include a starting point also: 

LINE (0,0)-(639,399) 'draw ~iagonal line down 
screen 
LINE (0,100)-(639,100) 'draw bar across screen 
we can indicate the color to draw the line in: 
LINE (10,10)-(20,20),2 'draw in color 2 

The final argument to line is ",B" -- box or ",BF" 
filled box. The syntax indicates we can leave out 
color and include the final argument as follows: 

LINE (0,0)-(100,100)"B 'draw box in foreground 

or include it: 

LINE (0,0)-(200,200),2,BF 'filled box color 2 

- 144 -

( 



( 
The ",B" tells BASIC to draw a rectangle using the 
points (xl,yl) and (x2,y2) as upper left and lower 
right corners respectively. This is a convenient 
abbreviation of the following four LINE commands: 

LINE (xl,yl)-(x2,yl) 
LINE (xl,yl)-(xl,y2) 
LINE (x2,yl)-(x2,y2) 
LINE (xl,y2)-(x2,y2) 

The ",BF" means draw the same rectangle as ",B" but 
also fill in the interior points with the selected 
color. 

When out of range coordinates are given the line 
command the coordinate which is out of range is given 
the closest legal value. In other words, negative 
values become zero, y values greater than 399 become 
399 and x values greater than 639 become 639. 

Another form of the LINE command allows the user to 
specify the coordinates of a point as an offset from 
the previous point. The STEP(xoffset,yoffset) form 
can be used wherever a coordinate is used. Note that 
all of the graphics statements and functions update 
the "more recent point used". In a line command if 
the relative form is used on the second coordinate it 
is relative to the first coordinate. The only other 
way "the most recently used" point is changed is that 
CLS initialize it to be the point in the moddle of 
the screen (320,200). 

Example: Draw lines forever using random color --

10 CLS 
20 LINE -(RND*319,RND*199),RN~*4 
30 GO TO 20 

Draw vertical line pattern - line on line off 

10 FOR X=0 TO 639 
20 LINE (X,0)-(X,399),X AND 1 
30 NEXT 

Draw random size boxes filled with random colors 

10 CLS 
20 LINE -(RND*639,RND*399),RND*2,BF 
30 GO TO 20 

The following program segment as shown on the next 
page will print the time in the upper left hand corner 
of the screen and then simulate the second hand of a 
clock. 

- 145 -



10 CLS 
20 T$=TIME$ : LOCATE 1,1 : PRINT T$ 
30 SEC = VAL(MID$(T$,7,2)) 
40 S = 3*6.28/4+SEC*6.28/60 
50 X=200*COS(S) : Y=200*SIN(S) 
60 LINE (320,20~)-STEP(X,Y),7 
70 IF SEC = VAL(MID$(TIME$,7,2)) GOTO 70 
80 LINE (320,200)-STEP(X,Y),0 
90 GOTO 20 

2.42 LINE INPUT 

Format LINE INPUT[i] [<"prompt string">i]<string variable> 

Purpose: To input an entire line (up to 254 characters) to a 
string variable, without the use of delimiters. 

Remarks: The prompt string is a string literal that is 
printed at the terminal before input is accepted. 

( 

A question mark is not printed unless it is part of 
the prompt string. All input from the end of the 
prompt to the carriage return is assigned to <string 
variable>. However, if a line feed/carriage return 
sequence (this order only) is encountered, both 
characters are echoedi but the carriage return is <= 
ignored, the line feed is put into <string variable>, 
and data input continues. . 

If LINE INPUT is immediately followed by a semi
colon, then the carriage return typed by the user 
to end the input line does not echo a carriage return/ 
line feed sequence at the terminal. 

A LINE INPUT may be escaped by typing \CTRL\ + [£J 
BASIC will return to command level and type Ok. 
Typing CaNT resumes execution at the LINE INPUT. 

Example: See example in the next section, "LINE INPUT# State
ment" . 

2.43 LINE INPUT# 

Format LINE INPUT#<file number>,<string variable> 

- 146 -



( where: 

<file number> is the number under which the file 
was OPENed. 

<string variable> is the variable name to which the 
line will be assigned. 

Purpose: To read an entire line (up to 254 characters), with
out delimiters, from a sequential data file to a 
string variable. 

Remarks: LINE INPUT# reads all characters in the sequential 
file up to a carriage return. If then skips over the 
carriage return/line feed sequence, and the next LINE 
INPUT# reads all characters up to the next carriage 
return. (If a line feed/carriage return sequence is 
encountered, it is preserved.) 

Example: 

LINE INPUT# is especially useful if each line of a 
data file has been broken into fields, or if a 
BASIC program saved in ASCII mode is being read as 
data by another program. 

10 OPEN 110 11 ,1, IILIST II 
20J LINE INPUT IICUSTOMER INFORMATION? II ; C$ 
30 PRINT #1, C$ 
40 CLOSE 1 
50 OPEN IIIII,1,IILISTII 
60 LIN E I N P UT # 1 , C$ 
70 PRINT C$ 
80 CLOSE 1 
RUN 
CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS 
LINDA JONES 234,4 MEMPHIS 
Ok 

2.44 LIST 

Format LIST [<line>[-[<line>]]] [,<filespec >] 

where: 

<line> is a valid line number in the range of 0 to 
65529. 

<filespec> is a string expression for the device or 
file specification. 

Purpose: To list the program currently in memory on the screen 
or other specified device. 

- 147 -



Remarks: LIST allows a program or a range of lines to be ( 
listed to the screen, disk file, or other speci-
fied device. If the optional device specification is 
omitted, the specified lines are listed to the screen. 

If the line range is omitted, the entire program is 
listed. 

When the hyphen(-) is used in a line range, three 
options are available 

1. If only the first number is given, that line and 
all higher numbered lines are listed. 

2. If only the second number is given, all lines 
from the beginning of the program through the 
given line are listed. 

3. If both numbers are given, the inclusive range 
is listed. 

Example: LIST, II L PT 1 : II 

LIST 10-20 

LIST 10-,IISCRN:1I 

Lists program on the printer 

Lists lines 10 through 20 on 
the screen 

Lists lines 10 through last 
on the screen 

LIST -200,IIFILE1.BASII Lists first through 200 lines 
to file IIFILE1.BASII on default 
disk drive. 

2,45 LLIST 

Format LLIST [<line> [-[<line>]]] 

where: 

<line> is a valid line number in the range of 0 to 
65529. 

Purpose: To list all or part of the program currently in 
memory on the printer. 

Remarks: BASIC always returns to command level after LLIST 
is executed. 

- 148 -



( 
Example: LLIST Prints a listing of the entire program 

LLIST lID-3Q) Prints lines 10 through 30 

LLIST lQ)(/)- Prints all lines from 100 through the 
end of the program 

LLIST - 3IDQ) Prints first through lines 300 

2,46 LOAD 

Format LOAD <filespec>[,R] 

where: 

<filespec> is a string expression of the device and 
filename of the program to be loaded into 
memory. 

R is an optional switch that causes the program 
to be run after it is loaded. 

Purpose: To load a program from the specified device into 
memory, and optionally run it. 

Remarks: The LOAD statement causes a GW-BASIC program to be 
loaded into memory. 

<filespec> consists of either a device name or a 
file descriptor. If specified, the non-disk device 
name must be four characters. The file descriptor 
consists of 

[<drive>:] <filename> [.<extension>] 

<drive> specifier is the one letter identifier 
associated with the disk drive. <filename> may be 
one to eight characters. <extension> may be one to 
three characters. 

If the ,R option is included, the program will be 
run after loading. LOAD <filespec>,R is equivalent 
to RUN <filespec>. 

Example: LOAD "MENU" 

LOAD "TESTII,R 

Loads program "MENU" but does not 
run it. 

Loads program "TEST" and runs it 

- 149 -



2.47 

Format 

LOCATE 

LOCATE [<row>] [, [<col>] [, [<cursor>]]] 

where: 

<row> 

<col> 

is a line number (vertical) on the screen. 
Row should be a numeric expression returning 
an unsigned integer in the range 1 to 25. 

is the column number on the screen. It 
should be a numeric expression returning 
an unsigned integer in the range 1 to 40 
or 1 to 80, depending on screen width. 

<cursor> is a numeric expression representing the 
desired color of the cursor. 

purpose: The LOCATE statement moves the cursor to a specified 
position on the screen. The optional cursor parameter 
may be used to select the color of the nonblinking 
cursor. 

Remarks: Any value outside the specified ranges will result 
in an IIIllegal function call il error. In this case, 
previous values are retained. 

Any parameter may be omitted from the statement. 
If a parameter is omitted, the previous value is 
assumed. 

Note that setting the cursor to the background color 
makes the cursor invisible. 

Example: 10 LOCATE 1,1 

Moves the cursor to upper left corner of the screen. 

20 LOCATE ,,1 

Makes the cursor visible; position remains 
unchanged. 

2.48 LPRINT~ LPRINT USING 

Format LPRINT [<list of expressions>] [i J 

LPRINT USING <string exp>;<list of expressions>[;] 

- 150 -



r 

( 

purpose: To print data on the printer. 

Remarks: Same as PRINT and PRINT USING, except output goes 
to the printer. See "PRINT Statement" and "PRINT 
USING Statement". 

Example: 10 LPRINT "ABC" 
20 END 

2.49 

Format LSET <string variable> = <string expression> 

RSET <string variable> = <string expression> 

Purpose: To move data from memory to a random file buffer 
(in preparation for a PUT statement). 

Remarks: If <string expression> requires fewer bytes than 
were FIELDed to <string variable>, LSET left-justifies 
the string in the field, and RSET right-justifies the 
string. (Spaces are used to pad the extra positions.) 
If the string is too long for the field, characters 
are dropped from the right. Numeric values must be 
converted to strings before they are LSET or RSET. 
See the MKI$, MKS$, MKD$ functions. 

Note LSET or RSET may also be used with a non-fielded 
string variable to left-justify or right-justify a 
string in a given field. For example, the program 
lines. 

110 A$=SPACE$(20) 
120 RSET A$=N$ 

right-justify the string N$ in a 20-character field. 
This can be very handy for formatting printed output. 

Example: 100 LSET A$=MKS$(AMT) 

2.50 MERGE 

Format MERGE <filespec> 

where: 

<filespec> is a string expression for the file 
specification. 

- 151 -



Purpose: Searches the disk for the spcified file and incor
porates it into the program in memory. After the 
files have been merged, the new program resides in 
memory. 

Remarks: The MERGE statement incorporates the lines from an 
ASCII file on disk into the program already in 
memory. The program being merged must have been 
saved in ASCII format. If it was not, a "Bad file 
mode" error results the program in memory remains 
unchanged. 

If any of the line numbers in the file to be merged 
match those in memory, the lines from the file to be 
merged will replace those in memory. 

Example: 10 MERGE IISUBRTW' 

Incorporates all lines of the program SUBRTN into 
those of the file in memory. 

2,51 MID$ 

Format MID$«string expl>,n[,m])=<string exp2> 

where: 

n is an integer expression in the range 1 to 255. 

m is an integer expression in the range 0 to 255. 

<string expn> is string expression. 

Purpose: To replace a portion of one string with another 
string. 

Remarks: The characters in <string expl>, beginning at posi
tion n, are replaced by the characters in <string 
exp2>. The optional m refers to the number of charac
ters from <string exp2> that will be used in the 
replacement. If m is omitted, all of <string exp2> 
is used. However, regardless of whether m is omitted 
or included, the replacement of characters never goes 
beyond the original length of <string expl>. 

Example: 1e> A$=IIKANSAS CITY, MOil 
20 MIDS(A$,14)=IIKS II 

30 PRINT A$ 
RUN 
KANSAS CITY, KS 

- 152 -

r 



( 

( 

2.52 

Format 

MID$ is also a function that returns a substring 
of a given string. 

NAME <old filename> AS <new filename> 

Purpose: To change the name of a disk file. 

Remarks: <old filename> must exist and <new filename> must not 
exist; otherwise an error will result. After a 
NAME command, the file exists on the same disk, in 
the same area of disk space, with the new name. 

Example: Ok 

2.53 NEW 

NAME "ACCTS" AS "LEDGER" 
Ok 

In this example, the file that was formerly named 
ACCTS will now be named LEDGER. 

Format NEW 

Purpose: To delete the program currently in memory and clear 
all variables. 

Remarks: NEW is entered at command level to clear memory before 
entering a new program. BASIC always returns to 
command level after a NEW is executed. 

2.54 ON COM(n) GOSUB 

Format ON COM(n) GOSUB <line> 

where: 

n is the number of the communications adapter (1 - 4) . 

Purpose: Sets up a line number for BASIC to trap to when there 
is information coming into the communications buffer. 

- 153 -



Remarks: A COM(n) ON statement must be executed to "activate" 
this statement for adapter n. After COM(n) ON, if a ~ 
non-zero line number is specific in the ON COM(n) 
statement then every time BASIC starts a new state-
ment, it will check to see if any characters have come 
in to the specified communications adapter. If so, 
it will perform a GOSUB to the specified line. 

If COM(n) OFF was executed, no trapping takes place 
for the adapter and the event is not remembered even 
if it does take place. 

If a COM(n) STOP statement has been executed, no 
trapping can take place for the adapter, but if a 
character is received, this is remembered so an 
immediate trap will take place when COM(n) ON is 
executed. 

When the trap occurs, an automatic COM(n) STOP is 
executed so that recursive traps can never take place. 
The RETURN from the trap routine will automatically 
do a COM(n) ON unless an explicit COM(n) OFF has been 
performed inside the trap routine. 

Event trapping does not take place when BASIC is not 
executing a program. When an error trap (resulting 
from an ON ERROR statement) takes place, this auto- C 
matically disables all trapping (including ERROR, COM 
and KEY) • 

Using a line of O(zero) disables trapping of communi
cations activity. 

Typically, the communications trap routine will read 
an entire message from the communications line before 
returning. It is not recommended to use the communi
cations trap for single character messages since at 
high baud rates, the overhead of trapping and reading 
for each individual character may cause the communica
tions buffer to overflow. 

You may use RETURN line if you want to go back to the 
BASIC program at a fixed line number. Use of this 
non-local return must be done with care, however, 
since any other GOSUBs, WHILEs, or FORs that were 
active at the time of the trap will remain active. 

Example: 150 ON COM(l) GOSUB 500 

499 STOP 
5~0 REM Event trap subroutine for Communications 
channel 1 

- 154 -



( 
510 C$=INPUT$(LOC(l ),#1) 
characters 
520 RETURN 

2.55 ON ERROR GOTO 

Format ON ERROR GOTO <line number> 

REM read all avaialble 

purpose: To enable error trapping and specify the first line 
of the error handling subroutine. 

Remarks: Once error trapping has been enabled all errors 
detected, including direct mode errors (e.g., Syntax 
errors), will cause a jump to the specified error 
handling subroutine. If line number does not exist, 
an "Undefined line" error results. To disable error 
trapping, execute an ON ERROR GOTO O. Subsequent 
errors will print an error message and halt execu
tion. An ON ERROR GOTO 0 statement that appears in 
an error trapping subroutine causes BASIC to stop and 
print the error message for the error that caused 
the trap. It is recommended that all error trapping 
subroutines execute an ON ERROR GOTO 0 if an error is 
encountered for which there is no recovery action. 

Note If an error occurs during execution of an error handl
ing subroutine, the BASIC error message is printed and 
execution terminates. Error trapping does not occur 
within the error handling subroutine. 

Example: 10 ON ERROR GOTO 1000 

2,56 ON" ,GOSUB J ON .. ,GOTO 

Format ON <expression> GO TO <list of line numbers> 

ON <expression> GOSUB <list of line numbers> 

Purpose: To branch to one of several specified line numbers, 
depending on the value returned when an expression is 
evaluated. 

Remarks: The value of <expression> determines which line number 
in the list will be used for branching. For example, 
if the value is three, the third line number in the 
list will be the destination of the branch. (If the 
value is a non-integer, the fractional portion is 
rounded.) 

- 155 -



In the ON ••• GOSUB statement, each line number in the 
list must be the first line number of a subroutine. 

If the value of expression is zero or greater than 
the number of items in the list (but less than or 
equal to 255), BASIC continues with the next executable 
statement. If the value of expression is negative 
or greater than 255, an "Illegal function call" error 
occurs. 

Example: 100 ON L-1 GOTO 150,300,320,390 

2.57 ON KEY(n) GOSUB 

Format ON KEY(n) GOSUB <line> 

where: 

n is a numeric expression in the range of 1 to 16 
indicating the key to be trapped, as follows: 

1-12 Function keys Fl TO F12 
13 Cursor up key 
14 Cursor left key 
15 Cursor right key 
16 Cursor down key 

Purpose: Sets up a line number for BASIC to trap to when the 
specified function key or cursor control key is 
pressed. 

Remarks: A KEY(n) ON statement must be executed to "activate" 
this statement. After KEY(n) ~ ON, if a non-zero line 
number is specified in the ON KEY(n) statement, then 
every time BASIC starts a new statement, it will check 
to see if the specified key was pressed. If so, it 
will perform a GOSUB to the specified line. 

If a KEY(n) OFF statement is executed, no trapping 
takes place for the specified key and the event is 
not remembered even if it does take place. 

If a KEY(n) STOP statement has been executed, no 
trapping can take place for the specified key, but 
if the key is pressed, it is remembered so that an 
immediate trap will take place when KEY(n) ON is 
executed. 

When the trap occurs, an automatic KEY(n) STOP is 
executed so that recursive traps can never take place. 

- 156 -

( 

C 



( The RETURN from the trap routine will automatically 
do a KEY(n) ON unless an explicit KEY(n) OFF has been 
performed inside the trap routine. 

Event trapping does not take place when BASIC is not 
executing a program. When an error trap (resulting 
from an ON ERROR statement) takes place, it auto
matically disables all trapping (including ERROR, 
COM, and KEY). 

Key trapping may not work when other keys are pressed 
before the specified key. The key that caused the 
trap cannot be tested using INPUT$ or INKEY$, so the 
trap routine for each key must be different if a 
different function is desired. 

If line is 0, this disables trapping of the specified 
key. 

You may use RETURN line if you want to go back to the 
BASIC program at a fixed line number. Use of this non
local return must be done with care, however, since 
any other GOSUBs, WHILEs, or FORs that were active 
at the time of the trap will remain active. 

KEY(n) ON has no effect on whether the Soft Key values 
are displayed at the bottom of the screen. 

Example: 100 ON KEY(5) GOSUB 200 
110 GOTO 110 
120 REM CONTINUE HERE AFTER FK5 PRESSED 

. 
190 STOP 
200 REM FUNCTION KEY 5 EVENT HANDLER SUBROUTINE 

. 
290 RETURN 120 

2,58 OPEN 

Format OPEN [<dev>] <filename> [FOR <mode 1>] 
AS [#]<file number> [LEN=<reclen>] 

OPEN <mode 2>, [#]<file number>, [<dev>] 
<filename> [,<reclen>] 

- 157 -



where: 

<dev> 

<filename> 

<mode 1> 

<mode 2> 

is optionally part of the file name 
string and may be one of the following. 

A: - D: Disk 
KYBD: Keyboard - Input Only 

Screen - Output Only 
Printer 1 

SCRN: 
LPTl: 
COMl: RS232C Communications 1 

is a valid string literal or variable 
optionally containing <dev>. If <dev> 
is omitted, current disk is assumed. 

determines the initial positioning with
in the file and the action to be taken 
if the file does not exist. The valid 
mode and actions taken are: 

INPUT Position to the 
existing file. 
found" error is 
does not exist. 

beginning of an 
A "File not 
given if the file 

OUTPUT Position to the beginning of the 
file. If the file does not 
exist, one is created. 

APPEND Position to the end of the file. 
If the file does not exist, one 
is created. 

If the FOR <mode 1> clause is omitted, 
the initial position is at the beginning 
of the file. If the file is not found, 
one is created. This is the Random I/O 
mode. That is, records may be read or 
written at will at any position within 
the file. 

is a string expression whose first 
character is one of the following. 

"0" specifies sequential output mode 
"I" specifies sequential input mode 
"R" specifies random input/output mode 

<file number> is an integer expression returning a 
number in the range 1 through 15. The 
number is used to associate an input/ 
output buffer with a disk file or device. 
This association exists until a CLOSE 
statement is executed. 

- 158 -

( 



( 
<reclen> is an integer expression in the range 

1 to 32767. This value sets the record 
length to be used for random files (see 
the FIELD statement). If omitted, the 
record length defaults to 128 byte 
records. 

Purpose: To allow input/output operations to take place to/from 
a file or to device. 

Remarks: When a disk file is OPENed FOR APPEND, the position 

Example: 

is initially at the end of ~the file and the record 
number is set to the last record of the file (LOF(x)/ 
128). PRINT#, WRITE#, or PUT will then extend the 
file. The program may position elsewhere in the file 
with a GET statement. If this is done, the mode is 
changed to random and the position moves to the record 
indicated. 

Any values entered outside of the ranges given will 
result in an "Illegal function call" error. The file 
is not opened. 

If the file is opened as INPUT, attempts to write to 
the file will result in a "Bad file mode" error. 

If the file is opened as OUTPUT, attempts to read the 
file will result in a "Bad file mode" error. 

At anyone time, it is possible to have a particular 
disk filename OPEN under more than one file number. 
This allows different modes to be used for different 
purposes. Or, for program clarity, to use different 
file numbers for different modes of access. Each 
file number has a different buffer, so several records 
from the same file may be kept in memory for quick 
access. 

A file may NOT be opened FOR OUTPUT, however, on 
more than one file number at a time. 

10 OPEN IIOATA II FOR OUTPUT AS #1 
or 

10 OPEN 110 11 ,#1, IIOATA II 

30 OPEN IIB:TEST II AS 1 LEN=256 
or 

30 OPEN IIR II ,1,IIB:TEST II ,256 

- 159 -



2.59 

Format 

OPEN "COM 

OPEN "COMn: [< speed>] [, <pari ty>] [, <data>] [, < stop>] 
[,BIN] [,LF]" AS [#]<filenum> 

where: 

n is the number of the communication adapter (1 - 4) • 

<speed> is the baud rate of the device in bits per 
second (bps). Valid speeds are 110, 150, 
300, 600, 1200, 2400, 4800, and 9600. The 
default is 300 bps. 

<parity> is a one-character constant specifying the 
parity for transmit and receive. The 
possible entries are: 

<data> 

<stop> 

BIN 

LF 

o - ODD: Odd transmit parity, odd receive 
parity checking. 

E - EVEN: Even transmit parity, even 
receive parity checking. 

N - NONE: No transmit parity, no receive 
parity checking. 

The default is EVEN(E). 

is an integer constant indicating the number 
of transmit/receive data bits. Valid entries 
are 7 or 8 bits per byte. The default is 7. 

is a constant indicating the number of stop 
bits. Valid value are 1 or 2. The default 
for baud rate greater than 110 is 1; for 110 
baud rate is 2. 

specifies that binary input/output will e 
performed. 

sends a linefeed following each carriage 
return. 

Purpose: To open (and initialize) a communications channel for 
input/output. 

Remarks: The OPEN "COM statement must be executed before a 
device can be used for RS232C communication. 

NOTE - only the following combinations are valid: 

- 160 -

( 

c 



( Data stop 
Bits Parity Bits 

7 · . . . . . E · ..... 1 
7 · ..... E · . . . . . 2 
7 · . . . . . 0 · ..... 1 
7 · ..... 0 · . . . . . 2 
8 · ..... E · ..... 1 
8 · ..... 0 · . . . . . 1 
8 · ..... N · ..... 1 
8 · . . . . . N · ..... 2 

The OPEN "COM statement allocates a 128 byte buffer for 
input in the same manner as OPEN for disk files. 

Any syntax errors in the- OPEN "COM statement will 
result in a "Bad filename" error. The incorrect 
parameter will not be shown. 

A "Device timeout" error will occur if Data Set Ready 
(DSR) is not detected. 

LF is intended for those using communication files 
to print to a printer. When LF is specified, a line
feed character (OAH) is automatically sent after each 
carriage return character (OCH). (This includes the 
carriage return sent as a result of the width setting.) 
Note that INPUT# and LINE INPUT # , when used to read 
from a COM file that was opened with the LF option, 
stop when they see a carriage return, ignoring the 
linefeed. The LF option is superseded by the BIN 
option. 

In the BIN mode, tabs are not expended to spaces, a 
carriage return is not forced at the end-of-line, 
and Control-Z is not treated as end-of-file. When 
the channel is closed, Control-Z will not be sent 
over the RS232C line if the BIN option has been used. 
The BIN option supersedes the LF option. 

Speed, parity, data, and stop must be listed in the 
order shown; LF, and BIN may be listed in any order. 

Example: 10 IICOM1 :9600,N,8,1 ,BIN II AS #2 

Will open communications channel 1 at a speed of 9600 
baud with no parity bit, 8 data bits and 1 stop bit. 
Input/output will be in the binary mode. Other lines 
in the program may now access channell as dev #2. 

- 161 -



2.60 OPTION BASE 

Format OPTION BASE n 

where: 

n is 0 or 1. 

Purpose: To declare the minimum value for array sUbscripts. 

Remarks: The default base on O. If the statement 

2.61 OUT 

OPTION BASE 1 

is executed, the lowest value an array subscript may 
have is one. 

Format OUT n,m 

where: 

n is the range of 0 to 65535. 

m is the range of 0 to 255. 

Remarks: The integer expression n is the port number, and the 
integer expression m is the data to be transmitted. 

OUT is the complementary statement to the INP function. 
Refer to "INP function". 

Example: 10 FOR I=&H200~ TO &H20FF 
20 0 UT I, 0 
30 NEXT I 
40 END 

2.62 PAINT 

Format PAINT «xstart>,<ystart» [,<paint color> [,<boader 
color>]] 

where: 

- 162 -

( 



( 
<xstart>,<ystart> are the coordinates where painting 

should begin. Painting should 
always start on a non-border point. 

<paint color> 

<border color> 

is the color to be placed in the 
filled area of the figure, in the 
range 0 to 7. 

specifies the border color of the 
figure to be filled in, in the range 
o to 7. 

Purpose: Fills a graphics figures with the color specified. 

Remarks: The PAINT statement will fill in a graphics figure 
with the specified color (attribute). If the paint 
attribute is not given in the command, it will default 
to the foreground color. If the border attribute is 
not given in the command, it will default to the 
paint attribute, which is required. 

This command can be used to fill any figure, but 
painting jagged edges or very complex figures may 
result in an "Out of memory" error. If this happens, 
the CLEAR statement must be given to increase the 
amount of stack space available. 

Example: 10 CLS 
20 CIRCLE (100,100),100,2 
30 PAINT (100,100),2,2 

The PAINT statement in Line 30 will fill in the 
circle drawn in Line 20 with color 2. 

2,63 PALETTE 1 PALETTE USING 

Format PALETTE 

PALETTE <palno>,<color> 

PALETTE USING <array> 

where: 

<paIno> is palette number in the range 0 to 7. 

<color> is color number in the range 0 to 28. 

<array> is an integer array. This form specifies a 
new value for each palette entry. 

- 163 -



Purpose: To allow the user to access the hardware palette to ( 
select the actual colors (attributes) to be displayed. 

Remarks: This statement lets the user select which colors 
(attributes) of the possible 28 color combinations 
will be used. These colors (attributes) are then 
used by all the other statements that refer to color 
(attribute) • 

The PALETTE statement without any parameters cause 
colors (attributes) to be set to their initial values. 
See the COLOR statement for these values. 
The 28 valid hardware colors (attributes) are defined 
as follows • 

• For Color Display: 

Color No. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

27,28 

R: Red 
G: Green 
B: Blue 

r 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Color 
Remarks 

R g G b B 

0 0 0 0 0 Black 
0 0 0 0 1 Blue 
0 0 0 1 1 
0 0 1 0 0 Green 
0 0 1 0 1 Cyan 
0 0 1 1 1 
0 1 1 0 0 
0 1 1 0 1 . 
0 1 1 1 1 
1 0 0 0 0 Red 
1 0 0 0 1 Yellow 
1 0 0 1 1 
1 0 1 0 0 Magenta 
1 0 1 0 1 White 
1 0 1 1 1 
1 1 1 0 0 
1 1 1 0 1 
1 1 1 1 1 
1 0 0 0 0 
1 0 0 0 1 
1 0 0 1 1 
1 0 1 0 0 
1 0 1 0 1 
1 0 1 1 1 
1 1 1 0 0 
1 1 1 0 1 
1 1 1 1 1 
1 1 1 1 1 

r: Half brightness red 
g: Half brightness green 
b: Half brightness blue 

- 164 -



( 

Eamp1e: 

• For Monochrome Display (one V-RAM model) 

Color No. Attribute 

0 Non-display 

1 Standard brightness 

2 - 28 Standard brightness 

• For Monochrome Display (two V-RAM model) 

Color Attribute 
High 

No. Blinking 
brightness 

0 0 

1 0 

2 0 

3 -26 0 

27 1 

28 1 

10 FOR PN = 0 TO 7 
20 READ PAL%(PN) 
30 NEXT PN 

0 

0 

1 

0 

0 

1 

40 PALETTE USING PAL%(7) 
50 STOP 

Standard 
brightness 

0 

1 

0 

1 

1 

0 

60 DATA 3,5,9,11,22,24,26,28 

Remarks 

Non-display (black) 

Standard brightness 

High brightness 

Standard brightness 

Standard blinking 

High brightness blinking 

This program segment would read in 8 colors from the 
data statement and assign them to the PAL% array. 
Line 40 is the equivalent of: 

41 PALETTE 0,PAL%(0) 
42 PALETTE 1,PAL%(1) 
43 PALETTE 2,PAL%(2) 
44 PALETTE 3,PAL%(3) 
45 PALETTE 4,PAL%(4) 
46 PALETTE 5,PAL%(5) 
47 PALETTE 6,PAL%(6) 
48 PALETTE 7,PAL%(7) 

- 165 -



2.64 

Format PLAY <string> 

where: 

<string> is a string expression consisting of music 
commands as explained below. 

Purpose: To play music as specified by 'string'. 

Remarks: PLAY uses a concept similar to that used in the DRAW 
statement by embedding a Music Macro language into 
one statement. A set of subcommands, used as part 
of the PLAY statement itself, specifies the particular 
action to be taken. 

The single character commands in PLAY are: 

A-G Plays a note in the range A-G. # or + after the 
note specifies sharp; - specifies flat. 

L[n] sets the length of each note. 
note, Ll is a whole note, etc. 
range 1 through 64. 

L4 is a quarter 
n may be in the 

The length may also follow the note when a 
change of length only is desired for a particular 
note. In this case, A16 is equivalent to L16A. 

MF sets music (PLAY statement) and SOUND to run in 
the foreground. That is, each subsequent note 
or sound will not start until the previous note 
or sound has finished. This is the default 
setting. 

MB sets music (PLAY statement) and SOUND to run 
in the background. That is, each note or sound 
is placed in a buffer allowing the GW-BASIC 
program to continue executing while the note or 
sound plays in the background. Up to 32 notes 
or rests can be played in the background at one 
time. 

MN Sets "music normal" so that each note will play 
7/8 of the time determined by the length (L). 

ML Sets "music legato" so that each note will play 
the full period set by length (L). 

- 166 -

( 



( MS Sets "music staccato" so that each note will play 
3/4 of the time determined by the length (L). 

N[n] Plays note n. n may range from 0 through 84 (in 
the 7 possible octaves, there are 84 notes). 
n = 0 means a rest. 

O[n] Sets the current octave. There are seven octaves, 
numbered 0 through 6. 

pen] Specifies a pause, ranging from 1 through 64. 

T[n] Sets the "tempo," or the number of L4's in one 
second. n may range from 32 through 255. 

x 

The default is 120. 

A period after a note causes the note to play 
3/2 times the length determined by L multiplied 
by T (tempo). Multiple periods may appear after 
a note. The period is scaled accordingly; for 
example, A. is 3/2, A •• is 9/4, A ••• is 27/8, 
etc. Periods may appear after a pause (P). 
In this case, the pause length may be scaled in 
the same way notes are scaled. 

Executes a substring. 
GW-BASIC Compiler) 

(not available with 

Because of the slow clock interrupt rate, some 
notes will not play at higher tempos (L64 at 
T255, for example). 

Example: 10 A$ = "BB-C" 
20 B$ = "04XA$: I 

2.65 

Format 

30 C$ = "L1CT50N3N4N5N6" 
40 PLAY "P2XA$;XB$;XC$;" 

POKE n,m 

where: 

n must be in the range 0 to 65535. 

m must be in the range 0 to 255. 

Purpose: To write a byte into a memory location. 

- 167 -



Remarks: The integer expression n is the address of the 
memory location to be POKEd. The integer expression 
m is the data to be POKEd. 

The complementary function to POKE is PEEK. 
The argument to PEEK is an address from which a byte 
is to be read. Refer to "PEEK function". 

POKE and PEEK are useful for efficient data storage, 
loading machine language subroutines, and passing 
arguments and results to and from machine language 
subroutines. 

BASIC does not do any checking on the address. So 
do not go POKEing around in BASIC's stack, BASIC's 
variable area, or your BASIC program. 

Example: 10 POKE &H5A00, &HFF 

2.66 PRESET 

Format PRESET «xcoordinate>,<ycoordinate» [,<attribute>] 

where: 

«xcoordinate>,<ycoordinate» specifies the point on 
the screen to be colored. 

<attribute> is the number of the color to be used. 

Purpose: sets the color of a specified point on the screen. 

Remarks: RESET works exactly like PSET except that if the 
attribute is not specified, the background color is 
selected. 

If an out-of-range coordinate is given, no action is 
taken, nor is an error message given. 

Coordinates can be shown as absolutes, as in the 
above syntax, or the STEP option can be used to 
reference a point relative to the most recent point 
used. The syntax of the STEP option is: 

STEP «xoffset>,<yoffset» 

For example, if the most recent point referenced 
were (0,0), STEP (10,0) would reference a point at 
offset 10 from x and a from y. 

- 168 -

( 

( 



Example: 10 FOR 1=0 TO 100 
20 PRESET (I,!) 
30 NEXT 'draw diagonal line to (100,100) 
40 FOR 1=100 TO 0 STEP -1 
50 PRESET (1,1),0 
60 NEXT 

clears out the line by setting each pixel to 
attribute o. 

2.61 PRINT 

Format PRINT [<list of expressions>] [i] 

? [<list of expressions>] [i] 

Purpose: To display data on the screen. 

Remarks: If <list of expressions> is omitted, a blank line is 
printed. If <list of expressions> is included, the 
values of the expressions are displayed on the screen. 
The expressions in the list may be numeric and/or 
string expressions. (strings must be enclosed in 
quotation marks.) 

Print positions 

The position of each printed item is determined by the 
punctuation used to separate the items in the list. 
BASIC divides the line into print zones of 14 spaces 
each. In the list of expressions, a comma causes the 
next value to be printed at the beginning of the next 
zone. A semicolon causes the next value to be 
printed immediately after the last value. Typing 
one or more spaces between expressions has the same 
effect as typing a semicolon. 

If a comma or a semicolon terminates the list of ex
pressions, the next PRINT statement begins printing 
on the same line, spacing accordingly. If the list 
of expressions terminates without a comma or a 
semicolon, a carriage return is printed at the end of 
the line. If the printed line is longer than the 
terminal width, BASIC goes to the next physical line 
and continues printing. 

Printed numbers are always followed by a space. 
Positive numbers are preceded by a space. Negative 
numbers are preceded by a minus sign. Single preci
sion numbers that can be represented with 6 or fewer 

- 169 -



digits in the unsealed format no less accurately than ( 
they can be represented in the scaled format, are 
output using the unsealed format. For example, lE-7 
is output as .0000001 and lE-8 is out as lE-08. 
Double precision numbers that can be represented with 
16 or fewer digits in the unsealed format no less 
accurately than they can be represented in the scaled 
format, are output using the unsealed format. For 
example, lD-1S is output as .000000000000001 and 
lD-16 is output as lD-16. 

A question mark may be used in place of the word 
PRINT in a PRINT statement. 

Example 1: 10 X=5 
20 PRINT X+5, X-5, X*(-5), XA 5 
30 END 
RUN 

10 0 -25 
Ok 

3125 

In this example, the commas in the PRINT statement 
cause each value to be printed at the beginning of 
the next printtzone. 

Example 2: LIST 
10 INPUT X 
20 PRINT X "SQUARED IS" XA 2 "AND"; 
30 PRINT X "CUBED IS" XA 3 
40 PRINT 
50 GOTO 10 
Ok 
RUN 
? 9 

9 SQUARED IS 81 AND 9 CUBED IS 729 

? 21 
21 SQUARED IS 441 AND 21 CUBED IS 9261 

? 

In this example, the semicolon at the end of line 20 
causes both PRINT statements to be printed on the same 

line, and line 40 causes a blank line to be printed 
before the next prompt. 

Example 3: 10 FO R X = 1 TO 5 
20 J=J+5 
30 K=K+10 
40 ?J;K; 
50 NEXT X 
Ok 
RUN 

5 10 10 20 15 30 20 40 25 50 
Ok 

- 170 -

c 



( 

2,68 .. 

Format 

In this example, the semicolons in the PRINT state
ment cause each value to be printed immediately after 
the preceding value. (Don't forget, a number is al
ways followed by a space and positive numbers are 
preceded by a space.) In lipe 40, a question mark is 
used instead of the word PRINT. 

PRINT USING 

PRINT USING <string exp>;<list of expressions> [;] 

Purpose: To print strings or numbers using a specified format. 

Remarks: <list of expressions> is comprised of the string 
expressions or numeric expressions that are to be 
printed, separated by semicolons. <string exp> is a 
string literal (or variable) comprised of special 
formatting characters. These field and the format 
of the printed strings or numbers. 

String Fields 

When PRINT USING is used to print strings, one of 
three formatting characters may be used to format 
the string field: 

"I" Specifies that only the first _character in the 
-given string is to be printed. 

"'n spaces," Specifies that 2+n characters from the string 
are to be printed. If the backslashes are typed 
with no spaces, two characters will be printed; 
with one space, three characters will be printed, 
and so on. If the string is longer than the 
field, the extra characters are ignored. If the 
field is longer than the string, the string will 
be left-justified in the field and padded with 
spaces on the right. 

Example: 10 A$="LOOK": B$="OUT" 
20 PRINT USING "!";A$;B$ 
30 RPINT USING II, ,II ;A$;B$ 
40 PRINT USING II, '";A$;B$;"!!" 
RUN 
LO 
LOOKOUT 
LOOK OUT !! 

- 171 -



"&" Specifies a variable length string field. When the 
field is specified with "&", the string is output 
exactly as input. 

Example: 10 A$=ILOOK":8$=IIOUT II 
20 PRINT USING II!II;A$; 
30 PRINT USING 11&";8$ 
RUN 
LOUT 

Numeric Fields 

When PRINT USING is used to print numbers, the follow
ing special characters may be used to format the 
numeric field: 

"#" A number sign is used to represent each digit position. 
Digit positions are always filled. If the number to 
be printed has fewer digits than positions specified, 
the number will be right-justified (preceded by spaces) 
in the field. 

A decimal point may be inserted at any position in the 
field. If the format string specifies that a digit is 
to precede the decimal point, the digit will always be 
printed (as 0 if necessary). Numbers are rounded as 
necessary. 

PRINT USING 11##.##11;.78 
0.78 

PRINT USING 11###.##11;987.654 
987.65 

PRING USING 11##.## 11;10.2,5.3,66.789,.234 
10.2 5.30 66.79 0.23 

In the last example, three spaces were inserted at the 
end of the format string to separate the printed 
values on the line. 

"+" A plus sign at the beginning or end of the format 
string will cause the sign of the number (plus or 
minus) to be printed before or after the number. 

"_" A minus sign at the end of the format field will cause 
negative numbers to be printed with a trailing minus 
sign. 

PRINT USING 11+##.## 11;-68.95,2.4,55.6,-.9 
-68.95 +2.40 +55.60 -0.90 

PRINT USING "##.##_ 11;-68.95,22.449,-7.01 
68.95- 22.45 7.01-

- 172 -

( 



c n**n A double asterisk at the beginning of the format 
string causes leading spaces in the numeric field 
to be filled with asterisks. The ** also specifies 
positions for two more digits. 

PRINT USING "**#.# ";12.39,-0.9,765.1 
*12.4 *-0.9 765.1 

1I$$n A double dollar sign causes a dollar sign to be 
printed to the immediate left of the formatted number. 
The $$ specifies two more digit positions, one of 
which is the dollar sign. The exponential format can
not be used with $$. Negative numbers cannot be 

n**$n 

n " , 

""A.A."'" 

used unless the minus sign trails to the right. 

PRINT USING "$$###.##";456.78 
$456.78 

The **$ at the beginning of a format string combines 
the effects of the above two symbols. Leading spaces 
will be asterisk-filled and a dollar sign will be 
printed before the number. **$ specifies three more 
digit positions, one of which is the dollar sign. 

PRINT USING n**$##.##n~2.34 
***$2.34 

A comma that is to the left of the decimal point in a 
formatting string causes a comma to be printed to 
the left of every third digit to the left of the 
decimal point. A comma that is at the end of the 
format string is printed as part of the string. A 
comma specifies another digit position. The comma 
has no effect if used with the exponential (AAAA) 
format. 

PRINT USING "####,.##";1234.5 
1,234.50 
PRINT USING "####.##,";1234.5 
1234.50, 

Four carats (or up-arrows) may be placed after the 
digit position characters to specify exponential 
format. The four carats allow space for E+xx to be 
printed. Any decimal point position may be specified. 
The significant digits are left-justified, and the 
exponent is adjusted. Unless a leading + or trailing 
+ or - is specified, one digit position will be used 
to the left of the decimal point to print a space or 
a minus sign. 

- 173 -



PRINT USING "##.##""""";234.56 
2.35E+02 

PRINT USING ".####""""_";888888 
.8889E+06 

PRINT USING "+.##""""";123 
+.12E+(])3 

"-" An underscore in the format string causes the next 
character to be output as a literal character. 

PRINT USING II 1##.## 1"12.34 
112.34! 

The literal character itself may be an underscore by 
placing "_" in the format string. 

"%" If the number to be printed is larger than the 
specified numeric field, a percent sign is printed 
in front of the number. If rounding causes the 
number to exceed the field, a percent sign will be 
printed in front of the rounded number. 

PRINT USING "##.##";111.22 
%111.22 

PRINT USING ".##";.999 
% 1 • 001 

If the number of digits specified exceeds 24, an 
"Illegal function call" error will result. 

2.69 PRINT# J PRINT# USING 

Format PRINT#<file number>, [USING<string exp>;J<list of exps> 

where: 

<file number> is the number used when the file was 
OPENed for output. 

<string exp> is a string expression comprised of 
formatting characters as described in 
the previous section, "PRINT USING 
Statement." 

<list of exps> is a list of the numeric and/or string 
expressions that will be written to the 
file. 

- 174 -

( 



( 
Purpose: To write data to a sequential disk file. 

Remarks: PRINT# does not compress data on the file. An image 
of the data is written to the file, just as it would 
be displayed on the screen with a PRINT statement. 
For this reason, care should be taken to delimit the 
data on the file, so that it will be input correctly 
from the file. 

In the list of expressions, numeric expressions should 
be delimited b'y semicolons. For example, 

PRINT#l,A;B;C;X;Y;Z 

(If commas are used as delimiters, the extra blanks 
that are inserted between print fields will also be 
written to the file.) 

string expressions must be separated by semicolons 
in the list. To format the string expressions cor
rectly on the file, use explicit delimiters in the 
list of expressions. 

For example, let A$="CAMERA" and B$="93604-l". 
The statement 

PRINT#l,A$;B$ 

would write CAMERA93604-l to the file. Because there 
are no delimiters, this could not be input as two 
separate strings. To correct the problem, insert 
explicit delimiters into the PRINT# statement as 
follows: 

PRINT#l,A$;",II;B$ 

The image written to the file is 

CAMERA,93604-1 

which can be read back into two string variables. 

If the strings themselves contain commas, semicolons, 
significant leading blanks, carriage returns, or 
line feeds, write them to the file surrounded by 
explicit quotation marks, CHR$(34). 

For example, let A$= " CAMERA, AUTOMATIC" and 
B$=" 93604-1". The statement 

PRINT#l,A$;B$ 

would write the following image to the file: 

- 175 -



CAMERA, AUTOMATIC 93604-1 

and the statement 

INPUT#l,A$,B$ 

would input "CAMERA" to A$ and "AUTOMATIC 93604-1" to 
B$. To separate these strings properly on the file, 
write double quotes to the file image using CHRS(34). 
The statement 

PRINT#l ,CHR$(34) ;A$;CHR$(34) ;CHR$(34) ;B$;CHR$(34) 

writes the following image to the file: 

IICAMERA, AUTOMATIC IIII 93604-1 11 

and the statement 

IN P UT # 1 , A $ , B $ 

would input "CAMERA, AUTOMATIC" to A$ and " 93604-1" 
to B$. 

The PRINT# statement may also be used with the USING 
option to control the format of the disk file. For 
example: 

PRINT #l,USING II $$###.##,II;J;K;L 

See also "WRITE# statement" in this chapter. 

2,70 PSET 

Format PSET «xcoordinate>,<ycoordinate» [,<attribute>] 

where: 

«xcoordinate>,<ycoordinate» specifies the point on 
the screen to be colored. 

<attribute> is the number of the color to be used. 

Purpose: Sets the color of a specified point on the screen. 

Remarks: When GW-BASIC scans coordinate values, it will allow 
them to be beyond the edge of the screen. However, 
values outside the integer range -32768 to 32767 will 
cause an "Overflow" error. 

- 176 -

( 

c 



( The coordinate (0,0) is always the upper left corner 
of the screen. The bottom right corner of the screen, 
therefore, is (639,399). 

PSET allows the attribute to be left off the command 
line. If it is omitted, the default is the fore
ground attribute. 

Example: 10 FOR 1=0 TO 100 
20 PSET (1,1) 
30 NEXT 'draw diagonal line to (100,100) 
40 FOR 1=100 TO 0 STEP -1 
50 PSET (1,1),0 
60 NEXT 

clears out the line by setting each pixel to o. 

2.71 PUT(Fl1es) 

Format PUT [#]<file number> [,<record number>] 

where: 

<file number> is the number under which the file 
was OPENed. 

<record number> is the record number for the record 
to be written. 

Purpose: To write a record from a random buffer to a random 
disk file. 

Remarks: IF <record number> is omitted, the record will have 
the next available record number (after the last PUT). 
The largest possible record number is 32767. The 
smallest record number is 1. 

PUT can be used for a communications file. In that 
case <record number> is the number of bytes to write 
to the communications file. 

Example: 10 OPEN "R" ,#1 ,"TESTPUT DATil 
20 PRINT #l,IABC" 
30 PUT #1 
40 CLOSE #1 
50 EN D 

- 177 -



Note PRINT#, PRINT# USING, and WRITE# may be used to put 
characters in the random file buffer before a PUT 
statement. 

In the case of WRITE#, BASIC pads the buffer with 
spaces up to the carriage return. Any attempt to read 
or write past the end of the buffer causes a "Field 
overflow" error. 

2.72 PUT(Graphics) 

Format PUT (xl, yl),<array>[,<action>] 

where: 

(xl, yl) is the coordinates of the top left corner 
of the image to be transferred. 

<array> is the name of the array to transfer the 
screen image to. 

<action> is one of these verb: PSET, PRESET, AND, 
OR, XOR 

Purpose: To transfer the contents of an array to the screen. 

Remarks: The PUT and GET statements are used to transfer 
graphics images to and from the screen. PUT and GET 
make possible animation and high-speed object motion 
in either graphics mode. 

The PUT statement transfers the image stored in the 
array onto the screen. The specified point is the 
coordinate of the top left corner of the image. An 
"Illegal function call" error will result if the 
image to be transferred is too large to fit on the 
screen. 

The action verb is used to interact the transferred 
image with the image already on the screen. 

PSET transfers the data onto the screen verbatim. 

PRESET is the same as PSET except that a negative 
image (black on white) is produced. 
AND is used when you want to transfer the image 
only if an image already exists under the transferred 
image. 

OR is used to superimpose the image onto the existing 
image. 

- 178 -

( 



XOR is a special mode often used for animation. XOR 
causes the points on the screen to be inverted where 
a point exists in the array image. This behavior is 
exactly like the cursor on the screen. XOR has a 
unique property that makes it especially useful for 
animation: when an image is PUT against a complex 
background twice, the background is restored unchanged. 
This allows you to move an object around the screen 
without obliterating the background. 

The default action mode is XOR. 

AND, OR and XOR have the following effects on color: 

array 
attrb 0 

AND 
screen attribute 

1 2 3 4 5 6 7 

010101010101010101 

1 101 1 1 0 1 1 1 0 1 1 1 0 1 1 1 

3 101 112 1 3 1 0 1 1 1 2 1 3 I 

5 I 0 111 0 I 1 1 4 I 5 I 4 151 

- 179 -



OR 
array screen attribute 
attrb 0 1 2 3 4 5 6 7 

1 I 1 III 3 I 3 I 5 I 5 I 7 I 7 I 

7 171 7 I 7 I 7 I 7 I 7 I 7 I 7 I 

XOR 
array screen attribute 
attrb 0 1 2 3 4 5 6 7 

o I 0 I 1 I 2 I 3 I 4 151 6 I 7 I 

3 I 3 I 2 I 1 I 0 I 7 I 6 I 5 I 4 I 

6 161 7 I 4 151 2 I 3 I 0 I 1 I 

7 171 6 I 5 I 4 I 3 I 2 I 1 I 0 I 

Animation of an object is usually performed as 
outlined below: 

1. PUT the object(s) on the screen. 

2. Recalculate the new position of the object(s). 

- 180 -

( 



( 3. PUT the object(s) on the screen a second time 
at the old location(s) to remove the old 
image(s). 

4. Go to step one, this time PUTting the object(s) 
at the new location. 

Movement done this way will leave the background 
unchanged. Flicker can be cut down by minimizing the 
time between steps 4 and 1, and by making sure that 
there is enough time delay between 1 and 3. If more 
than one object is being animated, every object 
should be processed at once, one step at the time. 

If it is not important to preserve the background, 
animaton can be performed using the PSET action 
verb. The idea is to leave a border around the 
image when it is first gotten as large or larger than 
the maximum distance the object will move. Thus, when 
an object is moved, this border will effectively 
erase any points. This method may be somewhat faster 
than the method using XOR described above since only 
one PUT is required to move an object (although you 
must PUT a larger image). 

The storage format in the array is as follows: 

2 bytes giving X dimension in BITS 
2 bytes giving Y dimension in BITS 
The array data itself 

The data for each row of pixels is left justified on 
a byte boundary, so if there are less than a multiple 
of 8 bits stored, the rest of the byte will be filled 
out with zeros. The required array size in bytes is: 

4+INT((x+7)/8)*y*3 

It is possible to modify the X and Y dimensions and 
even the data itself (it is best to use an integer 
array for this purpose). The X dimension is in ele
ment 0 of the array, and the Y dimension is found in 
element 1. Changing the X or Y dimensions in the 
array does not affect any storage allocations; it 
only changes the apparant size (as seen by the PUT 
statement). It must be remembered, however, that 
integers are stored low byte first, then high byte, 
but the data is transferred high byte first (leftmost) 
and then low byte. 

The bytes per element of an array are: 2 for integer 
4 for single precision 8 for double precision. 

- 181 -



Example: The following program segment will produce a blue 
ball bouncing around inside a white box. 

10 DIM B%(55) : CLS 
20 CIRCLE(7,7),7 
30 PAINT(7,7),1,7 
40 GET (0,0)-(14,14),B% 
50 CLS 
60 LINE(0,0)-(639,399),7,B 
70 VX=4: VY=4 : X=12 : Y=12 
80 PUT (X,Y),B%,XOR 
90 IF X=620 OR X=ABS(VX) THEN VX=-VX 
100 IF Y=380 OR Y=ABS(VY) THEN VY=-VY 
110 PUT (X,Y),B%,XOR 
120 X=X+VX : Y=Y+VY 
130 GOTO 80 

2,73 RANDOMIZE 

Format RANDOMIZE [<expression>] 

Purpose: To reseed the random number generator. 

Remarks: If <expression> is omitted, BASIC suspends program 
execution and asks for a value by printing 

Random Number Seed (-32768 to 32767)? 

before executing RANDOMIZE. 

If the random number generator is not reseeded, 
the RND function returns the same sequence of random 
numbers each time the program is RUN. To change the 
sequence of random numbers every time the program is 
RUN, place a RANDOMIZE statement at the beginning of 
the program and change the argument with each RUN. 

Example: 10 RANDOMIZE 
20 FOR 1=1 TO 5 
30 PRINT RND; 
40 NEXT I 
RUN 
Random Number Seed (-32768 to 32767)? 3 (user types 3) 

.88595 .484668 .586328 .119426 .709225 
Ok 
RUN 
Random Number Seed (-32768 to 32767)? 4 (user types 4 
for new sequence) 

.803506 .162462 .929364 .292443 .322921 
Ok 

- 182 -

( 



( RUN 
Random Number Seed (-32768 to 32767)? 3 (same sequence 
as first RUN) 

088598 .484668 .586328 .119426 .709225 
Ok 

2.74 READ 

Format READ <list of variables> 

Purpose: To read values from a DATA statement and assign them 
to variables. 

Remarks: A READ statement must always be used in conjunction 
with a DATA statement. READ statements assign varia
bles to DATA statement values on a one-to-one basis. 
READ statement variables may be numeric or string, 
and the values read must agree with the variable types 
specified. If they do not agree, a "Syntax error" 
will result. 

A single READ statement may access one or more DATA 
statements (they will be accessed in order), or 
several READ statements may access the same DATA 
statement. If the number of variables in list of 
variables exceeds the number of elements in the 
DATA statement(s), an "Out of data" error occurs. 
If the number of variables specified is fewer than the 
number of elements in the DATA statement(s), sub
sequent READ statements will begin reading data at 
the first unread element. If there are no subsequent 
READ statements, the extra data is ignored. 

See "DATA statement" and "RESTORE statement" in this 
chapter. 

Example: 10 PRINT "CITY", "STATE", II ZIP" 
20 READ C$,S$,Z 
30 DATA "DENVER,", COLORADO, 80211 
40 PRINT C$,S$,Z 
Ok 
RUN 
CITY STATE ZIP 
DENVER, COLORADO 80211 
Ok 

This program READs string and numeric data from the 
DATA statement in line 30. 

- 183 -



2.75 

Format REM [<remark>] 

, [<remark>] 

where: 

<remark> may be any sequence of characters. 

Purpose: To allow explanatory remarks to be inserted in a 
program. 

Remarks: REM statements are not executed but are output exactly 
as entered when the program is listed. 

Example: 

Note 

REM statements may be branched into (from a GOTO or 
GOSUB statement), and execution will continue with 
the first executable statement after the REM state
ment. 

Remarks may be added to the end of a line by preceding 
the remark with a single quotation mark instead of 
REM or :REM. 

· 120 REM CALCULATE AVERAGE VELOCITY 
130 FOR 1=1 TO 20 
140 SUM=SUM + V(I) 

• 

or 

· 120 FOR 1=1 TO 20 
130 SUM=SUM+V(I) 
140 NEXT I 

'CALCULATE AVERAGE VELOCITY 

Do not use a single quotation mark instead of :REM 
in a DATA statement as it would be considered legal 
data. 

- 184 -

( 



( 2.76 

Format 

RENUM 

RENUM [[<new number>] [, [<old number>] [,<increment>]]] 

where: 

<new number> is the first line number to be used in 
the new sequence. The default is 10. 

<old number> is the line in the current program where 
renumbering is to begin. The default is 
the first line of the program. 

<increment> is the increment to be used in the new 
sequence. The default is 10. 

Purpose: To renumber program lines. 

Remarks: RENUM also changes all line number references follow
ing GOTO, GOSUB, THEN, ON ••• GOTO, ON ••• GOSUB statements 
and ERL to reflect the new line numbers. If a non
existent line number appears after one of these state
ments, the error message "Undefined line xxxxx in 
yyyyy" is printed. The incorrect line number refer
ence (xxxxx) is not changed by RENUM, but line number 
yyyyy may be changed. 

Example: RENUM Renumbers the entire program. 

Note 

RENUM 300,,50 

RENUM 1000,900,20 

The first new line number will be 
10. Lines will increment by 10. 

Renumbers the entire program. 
The first new line number will be 
300. Lines will increment by 50. 

Renumbers the lines from 900 up 
so they start with line number 
1000 and increment by 20. 

RENUM cannot be used to change the order of program 
lines (for example, RENUM 15,30 when the program has 
three lines numbered 10, 20 and 30) or to create line 
numbers greater than 65529. An "Illegal function 
call" error will result. 

- 185 -



2.77 RESET 

Format RESET 

purpose: To close all disk files and flush the system buffer. 

Remarks: If all open files are on disk, then RESET is the 
same as CLOSE with no file numbers after it. 

Example: 10 OPEN ITEST1.DAT" FOR OUTPUT AS #1 
20 PRINT #l,IABC" 
30 RESET 
40 OPEN ITESTl.DAT" FOR INPUT AS #2 
50 INPUT #2,A$ 
60 PRINT A$ 
70 RESET 
80 END 

2,78 RESTORE 

Format RESTORE [<line number>] 

Purpose: To allow DATA statements to be reread from a 
specified line. 

Remarks: After a RESTORE statement is executed, the next READ 
statement accesses the first item in the first DATA 
statement in the program. If <line number> is speci
fied, the next READ statement accesses the first item 
in the specified DATA statement. 

Example: 10 READ A,B,C 
20 RESTORE 
30 READ D,E,F 
40 DATA 57, 68, 79 

2.79 RESUME 

Format RESUME 

RESUME 0 

RESUME NEXT 

RESUME <line number> 

- 186 -



( 
Purpose: To continue program execution after an error recovery 

procedure has been performed. 

Remarks: Anyone of the four formats shown above may be used, 
depending upon where execution is to resume: 

RESUME 
or 

RESUME 0 

RESUME NEXT 

Execution resumes at the 
statement which caused the 
error. 

Execution resumes at the 
statement immediately following 
the one which caused the error. 

RESUME <line number> Execution resumes at 
<line number> • 

A RESUME statement that is not in an error trap 
routine causes a "RESUME without error" message to be 
printed. 

Example: 10 ON ERROR GOTO 900 

. 
900 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY 
AGAIN":RESUME 90 

2.80 RETURN 

Format RETURN [<line number>] 

Purpose: To bring you back from a subroutine. 

Remarks: Although you can use RETURN <line number> to return 
from any subroutine, this enhancement was added to al
low non-local returns from the event trapping routines. 
From one of these routines you will often want to go 
back to the BASIC program at a fixed line number while 
still eliminating the GOSUB entry the trap created. 
Use of the non-local RETURN must be done with care, 
however, since any other GOSUBs, WHILEs, or FORs that 
were active at the time of the trap will remain 
active. 

- 187 -



Example: 10 FOR 1=1 TO 5 
20 GOSUB 100 
30 NEXT I 
40 END 
100 PRINT "SUBROUTINE",I 
110 RET U RN 

2.81 RUN 

Format RUN [<line number>] 

RUN <filename> [, R] 

where: 

<filename> is the name used when the file was SAVEd. 

Purpose: To begin execution of a program. 

Remarks: The first form begins exectuion of the program cur
rently in memory. If line number is specified, 
execution begins with the specified line number. 
Otherwise, execution begins at the lowest line 
number. 

The second format loads a file from disk into memory 
and runs it. It closes all open files and deletes 
the current contents of memory before loading the 
designated program. However, with the nRn option, 
all data files remain OPEN. 

Example: 10 PRINT 1/7 
RUN 
.1428571 

10 PI=3.141593 
20 PRINT PI 
RUN 20 
o 

RUN "B:NEWFIL",R 

- 188 -

( 

c 



( 2.82 

Format SAVE <filespec> [,A] 

SAVE <filespec> [,P] 

where: 

<filespec> is a string expression for the file 
specification. 

Purpose: To save a BASIC program file on disk. 

Remarks: The SAVE statement allows a GW-BASIC program to be 
saved on disk. 

The ,A option saves the program in ASCII format. 
If this option is not used, the file is saved in 
compressed binary format. 

The ,P option saves the file in compressed binary format. 
When such a "protected" program is later run or loaded, 
any attempt to LIST or EDIT it will result in an 
"Illegal function call" error. 

If the filename is less than 1 or more than 8 
characters, a "Bad file name" error results and the 
file is not saved. 

Files that are to be MERGEd must be saved with the 
,A option. Attempts to merge binary programs will 
result in a "Bad file mode" error. 

Example: 10 SAVE IIINVENT II 'Saves program on the default 
disk drive as file IIINVENT.BASIl 

20 SAVE IIPROGII,A 'Saves PROG in ASCII format 

30 SAVE IISECRET II ,P 'Saves SECRET as protected file 
which cannot be altered 

- 189 -



2.83 

Format 

SOUND 

SOUND <freq>,<duration> 

where: 

<freq> is the desired frequency in Hertz. A 
numeric expression in the range 37 to 3950. 

<duration> is the desired duration in clock ticks. 
A numeric expression in the range of 0 to 
255. 

Purpose: The SOUND statement is used to control the sound 
generated by the speaker. 

Remarks: The SOUND statement generates sound through the 
speaker. If the duration is zero, any current SOUND 
statement that is running will be turned off. If no 
SOUND statement is currently running, a SOUND state
ment with a duration of zero will have no effect. 

Example: 30 SOUND RND*1000+37,2 

This statement creates random sounds. 

2.84 STOP 

Forma t ' : STOP 

Purpose: To terminate program execution qnd return to BASIC's 
command level. 

Remarks: STOP statements may be used anywhere in ' a program to 
terminate execution. When a STOP is encountered, the 
following message is displayed: 

Break in nnnnn 

where nnnnn is the line number where the STOP occurred. 

Unlike the END statement, the STOP statement does not 
close files. 

BASIC always returns to command level after a STOP 
is executed. Execution may be resumed by issuing a 
CONT command. 

- 190 -

( 



E~ample: 10 INPUT A,B,C 
20 X=A*3 Y=B*5 
3(}) STOP 
40 Z=C*2 
50 PRINT Z 
RUN 
? 1,2,3 
Break in 30 
Ok 
PRINT Y 
10 

Ok 
CONT 

6 
Ok 

2.85 SWAP 

Format SWAP <variable>,<variable> 

Purpose: To exchange the values of two variables. 

Remarks: Any type variable may be SWAPped (integer, single 
precision, double precision, string), but the two 
varaibles must be of the same type or a "Type mismatch" 
error occurs. 

Example: 10 A$=II ONE II: B$=II ALL II: C$=IIFOR II 
20 PRINT A$ C$ B$ 
30 SWAP A$, B$ 
40 PRINT A$ C$ B$ 
RUN 
Ok 

ONE FOR ALL 
ALL FOR ONE 

Ok 

2.86 SYSTEM 

Format SYSTEM 

Purpose: To exit GW-BASIC and return to MS-DOS. 

Remarks: SYSTEM closes all files before it returns to MS-DOS. 

- 191 -



2.87 TRON J TROFF 

Format TRON 

TROFF 

Purpose: To trace the execution of program statements. 

Remarks: As an aid in debugging, the TRON statement (executed 
in either the direct or indirect mode) enables a 
trace fl'ag that prints each line number of the program 
as it is executed. The numbers appear enclosed in 
square brackets. The trace flag is disabled with the 
TROFF statement (or when a NEW command is executed). 

Example: TRON 
Ok 
LIST 
10 K= 10 
20 FOR J=l TO 2 
30 L=K+10 
40 PRINT J;K;L 
50 K=K+10 
60 NEXT 
70 END 
Ok 
RUN 
[10][20][30][40] 
[50][60J[30J[40] 
[50J[60][70] 
Ok 
TROFF 
Ok 

2.88 WAIT 

1 10 20 
2 20 30 

Format WAIT <port number>, n[,m] 

where: 

<port number> is the port number, in the range 0 to 
65535. 

Purpose: To suspend program execution while monitoring the 
status of a machine input port. 

Remarks: The WAIT statement causes execution to be suspended 
until a specified machine input port develops a 
specified bit pattern. The data read at the port is 

- 192 -

( 

( 

( 



exclusive OR'ed with the integer expression m, 
and then AND'ed with n. If the result is zero, 
BASIC loops back and reads the data at the port again. 
If the result is nonzero, execution continues with the 
next statement. If m is omitted, it is assumed to be 
zero. 

Example: 100 WAIT 32,2 

Note It is possible to enter an infinite loop with the WAIT 
statement. You can do a CTRL Break or a System Reset 
to exit the loop. 

2.89 WHILE ... WEND 

Format WHILE <expression> 

[<loop statements>] 

WEND 

Purpose: To execute a series of statements in a loop as long 
as a given condition is true. 

Remarks: If <expression> is not zero (i.e., true), <loop 
statements> are executed until the WEND statement is 
encountered. BASIC then returns to the WHILE state
ment and checks <expression>. If it is still true, 
the process is repeated. If it is not true, execu
tion resumes with the statement following the WEND 
statement. 

WHILE/WEND loops may be nested to any level. Each 
WEND will match the most recent WHILE. An unmatched 
WHILE statement causes a "WHILE without WEND" error, 
and an unmatched WEND statement causes a "WEND with
out WHILE" error. 

Example. 80 'BUBBLE SORT ARRAY A$ 
90 FLIPS=1 I FORCE ONE PASS THRU LOOP 
100 WHILE FLIPS 
110 FLIPS=0 
120 FOR 1=1 TO J-1 
130 IF A$(I»A$(I+1) THEN 

SWAP A$(I),A$(I+1 ):FLIPS=1 
140 NEXT I 
150 WEND 

- 193 -



2.90 

Format 

WIDTH 

WIDTH 

WIDTH 

WIDTH 

where: 

<size> 

<size> 

<filenum>,<size> 

<dev>,<size> 

is a numeric expression in the range 0 to 
255 specifying the new width. 

<filenum> is a numeric expression in the range 1 to 15. 

<dev> 

This is the number of the file OPENed to 
one of the devices listed below. 

is a string expression for the device iden
tifier. Valid devices are SCRN:, LPTl:, 
COMl:, COM2:, COM3:, or COM4: 

purpose: The WIDTH statement sets the printed line width, in 
characters, for the screen, printer, or communications 
channel. 

Remarks: Depending upon the syntax that is used, the following 
actions will be performed. 

WIDTH <size> or WIDTH "SCRN:", <size> 

Sets the screen width. Only 40 or 80 
character column width is allowed. 

WIDTH "LPTl:",<size> 

Stores a width assignment for the printer, but 
without changing the current setting. A subsequent 
OPEN "LPTl:" FOR OUTPUT AS #n will use this value 
for width while the file is open. 

WIDTH <file number>,<size> 

If the file is open to LPTl:, immediately changes 
the printer width to the size specified. This 
allows the width to be changed at will while the 
file is open. This form of WIDTH is used only 
with LPTl:, COMl:, COM2:, COM3:, or COM4:. 

Valid widths for the screen are 40 and 80. 
Valid width for the printer is 1 to 255. Any 
value outside these ranges will result in an 
"Illegal function call" error, and the previous 
value will be retained. 

- 194 -

( 

c 



( 

c 

width has no effect for the keyboard. 

Specifying WIDTH 255 for the printer (LPTl:) 
disables line folding. This has the effect of 
infinite width. 

WARNING: 

Changing the screen width causes the screen to be 
cleared. 

Example: 10 WIDTH 40 
15 WIDTH "LPTl: ",75 
20 OPE NUL P Tl : II FOR OUT PUT AS # 1 

. 
60 WIDTH #1 ,40 

In this example, line 10 sets the screen width to 40 
characters per line. Line 15 stores a printer width 
of 75 characters. Line 20 opens file #1 to the 
printer and sets the width to 75 for subsequent 
PRINT #1, ••• statements. Line 60 changes the current 
printer width to 40 characters. 

2.91 WRITE 

Format WRITE [<list of expressions>] 

Purpose: To output data on the screen. 

Remarks: If <list of expressions> is omitted, a blank line is 
output. If <list of expressions> is included, the 
values of the expressions are output at the screen. 
The expressions in the list may be numeric and/or 
string expressions, and they must be separated by 
commas. 

When the printed items are output, each item will be 
separated from the last by a comma. Printed strings 
will be delimited by quotation marks. After the last 
item in the list is printed, GW-BASIC inserts a 
carriage return/line feed. 

WRITE outputs values in a manner similar to PRINT. 
The difference between WRITE and PRINT is that WRITE 
inserts commas between the items as they are displayed 
and delimits strings with quotation marks. Also, 
positive numbers are not preceded by blanks. 

- 195 -



Example: 10 A=80:B=90:C$="THAT'S ALL" 
20 WRITE A,B,C$ 
RUN 
80, 90,"THAT'S ALL" 

Ok 

2.92 WRITE# 

Format WRITE#<file number>,<list of expressions> 

where: 

<file number> is the number under which the file 
was OPENed for output. 

Purpose: To write data to a sequential file. 

Remarks: The expressions in the list are string or numeric 
expressions, and they may be separated by commas or 
semicolons. 

The difference between WRITE# and PRINT# is that 
WRITE# inserts commas between the items as they are 
written to disk and delimits strings with quotation 
marks. Therefore, it is not necessary for the user 
to put explicit delimiters in the list. A carriage 
return/line feed sequence is inserted after the 
last item in the list is written to disk. 

Example: Let A$="CAMERA" and B$="93604-l". The statement: 

WRITE#l ,A$, B$ 

writes the following image to disk: 

ICAMERAI,193604-1" 

A subsequent INPUT# statement, such as: 

INPUT#l,A$,B$ 

would input "CAMERA" to A$ and "93604-1" to B$. 

- 196 -







( CHAPTER 3 

GW-BASIC FUNCTIONS AND VARIABLES 

The intrinsic functions and variables provided by GW-BASIC are 
presented in this chapter. The functions and variables may be 
called from any program without further definition. 

Arguments to functions and variables are always enclosed in 
parentheses. In the formats given for the functions and vari
ables in this chapter, the arguments have been abbreviated as 
follows: 

m and n Represent integer expressions 

x and y Represent any numeric expressions 

x$ and y$ Represent string expressions 

If a floating point value is supplied where an integer is re~ 
quired, GW-BASIC will round the fractional portion and use the 
resulting integer. 

Note: With the GW-BASIC interpreter, only integer and 
single precision results are returned by functions 
and variables. Double precision functions and 
variables are supported only by the GW-BASIC 
Compiler. 

- 197 -



3.1 ABS 

Format: ABS(x) 

Purpose: Returns the absolute value of the expression x. 

Remarks: The absolute value of a number is always positive or 
zero. 

Example: Ok 
PRINT ABS(7*(-5)) 

35 
Ok 

3.2 ASC 
Format: ASC(x$) 

Purpose: Returns the ASCII code for the first character of the 
string x$. 

Remarks: If x$ is null, an "Illegal function call" error is 
returned. 

The CHR$ function is the inverse of the ASC function, 
and is used to convert from the ASCII code to a 
character. 

See "ASCII character Codes Table" in Appendix. 

Example: Ok 

3.3 ATN 

10 X$=IITEST II 
20 PRINT ASC(X$) 
RUN 

84 
Ok 

Format: ATN(x) 

Purpose: Returns the arctangent of x in radians, 

Remarks: The result of the ATN function is a value in radians 
in the range ~PI/2 to PI/2, where PI=3.141593. The 
expression x may be any numeric type, but the evalua~ 
tion of ATN is always performed in single precision. 

- 198 -

c 

c 



( 

Example: 

If you want to convert radians to degrees, multiply 
by lBO/PI. 

Ok 
10 INPUT X 
20 PRINT ATN(X) 
RUN 
?3 

1 .249046 
Ok 

3.4 CDBL 

Format: CDBL(x) 

Purpose: To convert x to a double precision number. 

Remarks: Refer to the CINT and CSNG functions for converting 
numbers to integer and single precision. 

Example: Ok 

3.5 CHR$ 

10 A=454.67 
20 PRINT A;CDBL(A) 
RUN 

454.67 454.6700134277344 
Ok 

Format: CHR$(n) 

where n is in the range a to 255. 

Purpose: To convert an ASCII code to its character 
equivalent. 

Remarks: CHR$ function is commonly used to send a special 
character to the screen or printer. For instance, 
the BEL character could be sent CHR$(7) as a 
preface to an error message, or a form feed could 
be sent CHR$(12) to clear a screen and return the 
cursor to the horne position. 

Look under "ASC function" in this chapter, to 
convert a character back to its ASCII code. 

- 199 -



Example: Ok 

3.6 CINT 

PRINT CHR$(66) 
B 
Ok 

KEY 12, IIAUTO II +CHR$(13) 
Ok 

Sets function key F12 to the string "AUTO" 
joined with the carriage return. This is 
a good way to set the function keys so the 
carriage return is automatically done for 
you when you press the function key. 

Format: CINT(x) 

Purpose: To convert x to an integer. 

Remarks: x is converted to an integer by rounding the 
fractional portion. If x is not in the range 
-32768 to 32767, an "Overflow" error occurs. 

Example: 

3.7 COS 

See the FIX and INT functions, both of which also 
return integers. See also the CDBL and CSNG 
functions for converting numbers to single or 
double precision. 

Ok 
PRINT CINT(45.67) 

46 
Ok 

Format: COS (x) 

Purpose: Returns the cosine of x in radians. 

Remarks: The calculation of COS (x) is performed in single 
precision. 

- 200 -

( 



( 

Example: 

To convert from degrees to radians, multiply by 
PI/180, where PI=3.141593. 

Ok 
10 X=2*COS(.4) 
20 PRINT X 
RUN 

1.842122 
Ok 

3.8 CSNG 

Format: CSNG(x) 

Purpose: Converts x to a single precision number. 

Remarks: See the CINT and COBL functions for converting 
numbers to integer and double precision. 

Example: Ok 
10 A#=975.3421222# 
20 PRINT A#;CSNG(A#) 
RUN 

975.3421222 975.3421 
Ok 

3.9 CSRLIN 

Format: x=CSRLIN 

Purpose: Returns the vertical coordinates of the cursor. 

Remarks: The CSRLIN variable returns the current line (row) 
position of the cursor on the current screen. 
The value returned will be in the range of 1 to 
25. 

x=POS(O) will return the column location of the 
cursor. Refer to the "POSH function in this 
chapter. 

... 201 -



Refer to the "LOCATE" statement to see how to set 
the cursor line. 

Example: 10 Y=CSRLIN'Record current line 
20 X=POS(0)'Record current column 
30 LOCATE 24, 1: PRINT "HELLO" 
40 LOCATE X,Y 'Restore position to old line 
and column 

3,10 CVI J CVS J CVD 

Format CVI«2-byte string>) 

CVS«4-byte string>} 

CVD«8-byte string>} 

Purpose: To convert string values to numeric values. 

Remarks: Numeric values that are read in from a random 
file must be converted from strings back into 
numbers. 

Example: 

CVI converts a 2~byte string to an integer. 
CVS converts a 4-byte string to a single precision 
number. 
CVD converts an 8-byte string to a double 
precision number, 

See "MI<I$, MKS$, MKD$ Functions" in this . 
chapter. 

60 OPEN "TEST. DATil AS #1 LEN=16 
70 FIELD #1,4 AS N$, 12 AS B$ 
80 GET #1 
90 PRINT CVS(N$),B$ 

- 202 -

( 



( 3. II 

Format 

DATE$ 

DATE$=x$ 

y$=DATE$ 

where: 

rom = 

dd = 

yy = 

yyyy: = 

two digit value 

two digit value 

two digit value 

four digit value 

for the month (01 12) 

for the day (01 - 31) 

for the year (80 - 77) 

for the year (1980 2077) 

x$ is the date in one of the following forms: 

rom - dd - yy 

rom - dd - yyyy 

rom / dd / yy 

rom / dd / yyyy 

y$ is a 10 character string of the form rom - dd - yyyy. 

Purpose: Set or retrieve the current date. 

Remarks: Retrieves the current date and assigns it to the 
string variable if DATE$ is the expression in a 
LET or PRINT statement. The date that is retrieved 
will be calculated from the last date assigned with 
the DATE$=string statement. If DATE$ has never 
been assigned a value, then the value supplied by 
MS-DOS will be used. 

If x$ is not a valid date string, a IIType mismatch ll 

error will result. In this case, previous values 
are retained. 

If any of the values are out of range or are 
missing, an IIIllegal function call ll error results 
and the previous date is retained. 

- 203 -



Example: 10 DATE$=1I03/01/l983 11 

20 PRINT DATE$ 

Sets the current date to March 1, 1983 and prints 
"03/01/1983". 

3.12 EOF 

Format EOF «file number» 

where: 

<file number> is the file number specified on the 
OPEN statement. 

Purpose: To test for end of file condition. 

Remarks: The EOF function returns -1 (true) if end of file has 
been reached on the specified file. 

Example: 

3.13 

A zero (0) will be returned if end of file has not 
been reached. The file may be a sequential access 
file or it may be a communications file. A -1 for a 
communications file means the buffer is empty. 

50 OPEN IIDATA.DATII FOR INPUT AS #1 
60 C=0 
70 IF EOF(l) THEN 200 
80 INPUT #1, M(C) 
90 C=C+1 

100 GOTO 70 

Format: x = ERR 

y=ERL 

Purpose: To return the error code and line number associated 
with that error. 

Remarks: When an error handling routine is entered, the 

- 204 -

( 

( 



( variable ERR contains the error code for the error 
and the variable ERL contains the line number of the 
line in which the error was detected. 
The ERR and ERL variables are usually used in 
IF .•• THEN statements to direct program flow in the 
error handling routine. 

IF the statement that caused the error was a direct 
mode statement, ERL will contain 65535. 
To test whether an error occurred in a direct 
statement, use 

IF ERL=65535 THEN ••• 

Otherwise, use 

IF ERR=error code THEN ••• 

IF ERL=line number THEN 

If the line number is not on the right side of the 
relational operator, it cannot be renumbered with 
RENUM. Because ERL and ERR are reserved variables, 
neither may appear to the left of the equal sign in 
a LET (assignment) statement. 

Example: Ok 

3.14 EXP 

10 ON ERROR GOTO 50 
20 ERR=20 'this will cause a syntax error (ERR=2) 
30 ERR=30 'this will cause a syntax error (ERR=2) 
50 IF ERR=2 AND ERL=20 THEN RESUME NEXT 
60 ON ERROR GOTO 0 'BASIC will now take over. 
RUN 
Syntax error in 30 
Ok 

Format EXP(x) 

Purpose: Calculates the exponential function. 

Remarks: Returns e to the power of x. x must be ~ 88.02968. 
If EXP overflows, the "Overflow" error message is 
displayed, machine infinity with the appropriate 
sign is supplied as the result, and execution con
tinues. 

- 205 -



Example: Ok 
10 X=2 
20 PRINT EXP(X-1) 
RUN 

2.718282 
Ok 

3.15 FIX 

Format FIX (x) 

Purpose: Truncates x to an integer. 

Remarks: FIX(x) is equivalent to SGN(x)*INT(ABS(x». 
The major difference between FIX and INT is that FIX 
does not return the next lower number for negative x. 

Example: Ok 

3.16 FRE 

PRINT FIX(58.75) 
58 

Ok 
PRINT FIX(-58.75) 
-58 
Ok 

Format FRE(x) 

FRE (x$) 

Purpose: Returns the number of bytes in memory not being used 
by GW-BASIC. 

Remarks: Arguments to FRE are dummy arguments. 

FRE("") forces a garbage collection before returning 
the number of free bytes. GW-BASIC will not initiate 
garbage collection until all free memory has been 
used up. Therefore, using FRE("") periodically ~ill 
result in shorter delays for each garbage collection. 

Example: Ok 
PRINT FRE(0) 
14542 

Ok 

- 206 -

( 



( 3.17 HEX$ 

Format HEX${n) 

Purpose: Returns a string which represents the hexadecimal 
value of the decimal arguments. 

Remarks: n is rounded to an integer before HEX${n) is 
evaluated. 

See the OCT$ function for octal conversion. 

Example: Ok 
PRINT HEX$(32) 

20 
Ok 

3.18 INKEY$ 

Format INKEY$ 

Purpose: To read a character from the keyboard. 

Remarks: Returns either a one-character string containing a 
character read from the keyboard or a null string 
if no character is pending at the keyboard. 
No characters will be echoed and all characters are 
passed through to the program except for Control .... C, 
which terminates the program. 

Example: Ok 

3.19 INP 

10 Istop program until a key is pressed 
20 PRINT IIPress any key to continue" 
30 X $ = INK E Y $ : I F X $ = II II THE N 30 

Format INP{n) 

where n must be in the range 0 to 65535. 

Purpose: Returns the byte read from port n. 

Remarks: INP is the complementary function to the OUT statement. 

- 207 -



Example: 

100 A=INP(255) 

3.20 INPUT$ 

Format INPUT$(n[, [#]m]) 

where m is the file number used on the OPEN statement. 

Purpose: Returns a string of n characters, read from the 
keyboard or from file number m. 

Remarks: If the keyboard is used for input, no characters will 
be displayed on the screen and all control characters 
are passed through except Control - C, which is used 
to interrupt the execution of the INPUT$ function. 

Example 1: 

Example 2: 

10 'List the contents of a sequential file in 
hexadeimal 

20 OPEN IIIII,l,IIDATA.DATIl 
30 IF EOF(l) THEN 60 
40 PRINT HEX$(ASC(INPUT$(l,l))); 
50 GOTO 30 
60 PRINT 
70 END 

100 PRINT IIType P to proceed or S to stopll 
110 X$=INPUT$(l) 
120 IF X$=lIp ll THEN 500 
130 IF X$=IISII THEN 100 ELSE 100 

- 208 -



( 3.21 INSTR 

Format INSTR ( [n, ] x$ ,y$) 

where: 

n is a numeric expression in the range 1 to 255. 

x$, y$ may be string variables, string expression or 
string constants. 

Purpose: Searches for the first occurrence of string y$ in x$ 
and returns the position at which the match is found. 

Remarks: Optional offset n sets the position for starting the 
search. If n> LEN (x$) or if x$ is null or if y$ 
cannot be found, INSTR returns O. If y$ is null, 
INSTR returns n or 1. 

Example: 

3.22 INT 

If n is out of range, an "Illegal function call" 
error will be returned. 

Ok 
10 X$=IIABCDEB II 

20 Y$=IIB II 

30 PRINT INSTR(X$,Y$); INSTR(4,X$,Y$) 
RUN 

2 6 
Ok 

Format INT(x) 

Purpose: Returns the largest integer which is less than or 
equal to x. 

Remarks: See the FIX and CINT functions which also return 
integer values. 

Example: Ok 
PRINT INT(99.89) 

99 
Ok 
PRINT INT(-12,11) 
-13 
Ok 

... 209 -



3.23 LEFT$ 

Format LEFT$(x$,n) 

where n must be in the range 0 to 255. 

Purpose: Returns a string comprised of the leftmost n 
characters of x$. 

Remarks: If n is greater than LEN(x$), the entire string (x$) 
will be returned. If n = 0, the null string is 
returned. 

See the MID$ and RIGHT$ functions. 

Example: Ok 

3.24 LEN 

10 A$="CANON AS-100" 
20 B$=LEFT$(A$,5) 
30 PRINT B$ 
RUN 
CANON 
Ok 

Format LEN(x$) 

Purpose: Returns the number of characters in x$. 

Remarks: Unprintable characters and blanks are counted. 

Example: Ok 
10 X$="CANON AS-100" 
20 PRINT LEN(X$) 

3.25 LOC 

RUN 
1 2 

Ok 

Format LOC«file number» 

Purpose: Returns the current position in the file. 

Remarks: with random files, LOC returns the record number of 
the last record read from or written to a random file. 

- 210 -

( 



( with sequential files, LOC return the number of records 
read from or written to the file since it was OPENed. 
When a file is OPENed for sequential input, GW-BASIC 
reads the first sector of the file, so LOC will 
return a 1 even before any input from the file occurs. 

For a communications file, LOC(x) returns the number 
of characters in the input buffer waiting to be read. 
The input buffer can hold 128 characters. 
If there are more than 128 characters in the buffer, 
LOC(x) returns 128. 

Example: 200 IF LOC(l»50 THEN STOP 

3.26 LOF 

Format LOF«file number» 

Purpose: Returns the number of bytes allocated to the file or 
communications buffer. 

Remarks: For disk files, LOF will return a mUltiple of 128. 

Example: 

3.27 LOG 

For example, if the actual data in the file is 257 
bytes, the number 384 will be returned. 

For communications, LOF returns the amount of free 
space in the input buffer. That is, 128 .... LOC (x) . 
Use of LOF may be used to detect when the input 
buffer is getting full. In practicality, LOC is 
adequate for this purpose. 

70 OPEN "TEST.DAT" FOR INPUT AS #1 
80 PRINT LOF(l) 
90 CLOSE 

Format: LOG (x) 

Purpose: Returns the natural logarithm of x. 

- 211 -



Remarks: x must be greater than zero. The natural logarithm 
is the logarithm to the base e . 

Example: 0 k 
PRINT LOG(45/7) 
1.860752 

Ok 

3.28 LPOS 

Format LPOS(x) 

Purpose: Returns the current position of the print head within 
the printer buffer. 

Remarks: Does not necessarily give the physical position of 
the print head. x is a dummy argument. 

Example: 100 IF LPOS(X»60 THEN LPRINT CHR$(13) 

3.29 MID$ 

Format MID$ (x$,n [,m]) 

where nand m must be in the range 1 to 255. 

Purpose: Returns a string of length m characters from x$ 
beginning with the n-th character. 

Remarks: If m is omitted or if there are fewer than m characters 
to the right of the n-th character, all rightmost 
characters beginning with the n-th character are 
returned. If n > LEN (x$), MID$ returns a null string. 

If either n or m is out of range, an "Illegal function 
call" error will be returned. 

See also the LEFT$ and RIGHT$ functions. 

Example: Ok 
10 A$=IIGOOD" 
20 B$=IIMORNING EVENING AFTERNOON II 
30 PRINT A$;MID$tB$,9,7) 
RUN 
GOOD EVENING 
Ok 

- 212 -

( 



( 3.30 

Format MKI${<integer expression» 

MKS${<single precision expression» 

MKD${<double precision expression» 

Purpose: To convert numeric type values to string type value. 

Remarks: Any nume~ic value that is placed in a random file 
buffer within an LSET or RSET statement must be 
converted to a string. MKI$ converts an integer to 
a 2-byte string. MKS$ converts a single precision 
number to a 4-byte string. MKD$ converts a double 
precision number to an 8-byte string. 

See also "CVI,CVS,CVD Functions" in this chapter. 

Example: 

50 AMT=K+T 
60 FIELD #1,4 AS D$, 20 AS N$ 
70 LSET D$=MKS$(AMT) 
80 LSET N$=A$ 
90 PUT #1 

3.31 OCT$ 

Format OCT${n) 

Purpose: Returns a string which represents the octal value of 
the decimal argument. 

Remarks: n is rounded to an integer before OCT$(n) is evaluated. 

Example: PRINT OCT$(24) 
30 

Ok 

- 213 -



3.32 

Format PEEK(n) 

where n is an integer in the range 0 to 65535. 

Purpose: Returns the byte read from the indicated memory 
position. 

Remarks: The returned value will be an integer in the range 
o to 255. n is the offset from the current segment 
as defined by the DEF SEG statement. 

PEEK is the complementary function to the POKE 
statement. 

See DEF SEG and POKE statements in Chapter 2. 

Example: A=PEEK(&H5A00) 

3.33 POINT 

Format POINT(x,y) 

Purpose: Returns the color of the specified point on the 
screen. 

Remarks: The POINT function allows the user to read the 
attribute value of a pixel from the screen. If the 
point given is out of range the value ~l is returned. 

Example: 10 CLS 
20 FOR C=0 TO 7 
30 PSET (C*10,10),C 
40 I F POI NT ( C * 1 0, 1 0 ) < > C THE N P R I NT II Bra ken! II 

50 NEXT C 

3.34 POS 

Format POS(n) 

Purpose; Returns the current cursor column position. 

Remarks: The current column position of the cursor is returned, 
n is a dummy argument. 

The returned value will be in the range 1 to 80 or 

- 214 -

( 



1 to 40, depending on the current WIDTH setting. 

CSRLIN can be used to find the row position of the 
cursor. 

Also see the LPOS function. 

Example: IF POS(0»60 THEN PRINT CHR$(13) 

3,35 RIGHT$ 

Format RIGHT$(x$,n) 

Purpose: Returns the rightmost n characters of string x$. 

Remarks: If n is greater than or equal to LEN(x$), then x$ is 
returned. If n is zero, the null string is returned. 

Also see the MID$ and LEFT$ functions. 

Example: Ok 

3,36 RND 

10 A$=IICANON AS-100 11 

20 B$=RIGHT$(A$,6) 
30 PRINT B$ 
RUN 
AS-100 
Ok 

Format: RND [ (x) ] 

Purpose: Returns a random number between 0 and 1. 

Remarks: The same sequence of random number i s generated each 
time the program is RUN unless the random number 
generator is reseeded. This is most easily done 
using the RANDOMIZE statement. You may also reseed 
the generator when you call the RND function by using 
x where x is negative. This will always generate 
the particular sequence for the given x. This 
sequence is not affected by RANDOMIZE, so if you want 
it to generate a different sequence each time the 
program is run, you must use a different value for x 
each time. 

If x is positive or omitted, RND(x) generates the 
next random number in the sequence. 

- 215 -



RND(O) repeats the last number generated. 

Example: Ok 
10 FOR 1=1 TO 5 
20 A=INT(RND*100) 
30 PRINT A; 
40 NEXT I 
RUN 

12 65 86 72 79 
Ok 

3.37 SCREEN 

Format SCREEN«row>,<column> [,Z]) 

where: 

<row> is a valid numeric expression returning an 
unsigned integer in the range 1 to 25. 

<column> is a valid numeric expression returning an 
unsigned integer in the range 1 to 40 or 
1 to 80 depending upon the width. 

Z is a valid numeric expression returning a boolean 
result. 

Purpose: Returns the ASCII code (0 .... 255) for the character 
displayed on the screen at the specified row and 
column position. 

Remarks: The ASCII code for the character at the specified 
coordinates is stored in the numeric variable. If 
the optional parameter Z is given and non-zero, the 
color attribute for the character is returned 
instead. 

Any values entered outside of these ranges will 
result in an "Illegal function call" error. 

Example: 100 X=SCREEN(10,10) 

If the character at (10,10) is PA", then X will 
be 65. 

200 X=SCREEN(l,l,l) 

Returns the color attribute of the character in the 
upper left hand corner on the screen. 

- 216 -

( 



( 3.38 

Format 

Purpose: 

Remarks: 

Example: 

3.39 SIN 

SGN(x) 

Returns the mathematical signum function. 

If 

If 

If 

ON 

x> 0, SGN (x) returns l. 

x = 0, SGN(x) returns O. 

x < 0, SGN (x) returns -1. 

SGN(X)+2 GOTO 100,200,300 

Branches to 100 if x is negative, 200 if x is 0 
and 300 if x is positive. 

Format SIN(x) 

Purpose: Returns the sine of x in radians. 

Remarks: SIN (x) is calculated in single precision. 

If you want to convert degrees to radians, multiply 
by PI/180, where PI=3.141593. 

Example: Ok 
PRINT SIN(1.5) 

.9974951 
Ok 

3.40 SPACE$ 

Format: SPACE$(n) 

where n must be in the range 0 to 255. 

Purpose: Returns a string of spaces of length n. 

Remarks: Also see the SPC function in this chapter. 

- 217 -



Example: Ok 

3.41 SPC 

10 FO R 1=1 TO 5 
20 X$=SPACE$(I) 
30 PRINT X$;I 
40 NEXT I 
RUN 

1 
2 

Ok 

3 
4 

5 

Format SPC(n) 

where n must be in the range 0 to 255. 

Purpose: Prints n spaces on the screen or the printer. 

Remarks: SPC function may only be used with PRINT,LPRINT and 
PRINT# statements. A 'i' is assumed to follow the 
SPC(n) function. 

Also see the SPACE$ function in this chapter, 

Example: 

3.42 SQR 

Ok 
PRINT 
OVER 
Ok 

II 0 V E R I' S P C ( 1 0) II THE R E II 
THERE 

Format SQR(x) 

Purpose: Returns the square root of x. 

Remarks: x must be grea ter than or equal to zero. 

Example: Ok 
10 FOR 1=10 TO 25 STEP 5 
20 PRINT I, SQR(I) 
30 NEXT I 

- 218 -

( 



( RUN 
10 
1 5 
20 
25 

Ok 

3.162278 
3.872984 
4.472136 
5 

3.43 STR$ 

Format STR$(x) 

Purpose: Returns a string representation of the value of x. 

Remarks: The STR$ function is the inverse of VAL. 

Also see VAL function in this chapter. 

Example: 10 'Arithmetic for kids 
20 INPUT "Type a number";N 
30 ON LEN(STR$(N)) GOSUB 30,100,200,300 

3.44 STRING$ 

Format STRING$(n,m) 

Purpose: 

Example: 

STRING$(n,x$) 

where nand m must be in the range 0 to 255. 

Returns a string of length n whose characters all 
have ASCII code m or the first character of x$. 

Ok 
10 X$=STRING$(10,45) 
20 PRINT X$ "MONTHLY REPORT" X$ 
RUN 
----------MONTHLY REPORT----------
Ok 

- 219 -



3.45 

Format TAB (n) 

where n must be in the range I to 255. 

Purpose:. Tabs to position n. 

Remarks: If the current print position is already beyond 
space n, TAB goes to position n on the next line. 
Space I is the leftmost position, and the rightmost 
position is the width minus one. 

TAB may only be used in PRINT,LPRINT and PRINT# 
statement. 

Example: 10 PRINT "NAME" TAB(25) "AMOUNT" : PRINT 
20 READ A$,B$ 

3.46 TAN 

30 PRINT A$ TAB(25) B$ 
40 DATA IG.T.JONES I ,I$25.00" 
RUN 
NAME AMOUNT 

G. T. JONES 
Ok 

$25.00 

Format TAN (x) 

Purpose: Returns the tangent of x in radians. 

Remarks: TAN (x) is calculated in single precision. 

To convert degrees to radians, multiply by PI/180, 
where PI=3.141593. 

Also see the SIN,COS and ATN function in this 
chapter. 

Example: Ok 
10 INPUT X 
20 Y1=SIN(X) 
30 Y2=COS(X) 
40 Y3=TAN(X) 
50 Y4=ATN(X) 

- 220 -

( 



( 60 PRINT "X=";X 
70 PRINT "SIN(X)"; Y1 
80 PRINT "COS(X)"; Y2 
90 PRINT "TAN(X)"; Y3 

100 PRINT "ATN(X)"; Y4 
RUN 
? 1 
X=l 
SIN(X)= .841471 
COS(X)= .5403023 
TAN(X)=1.557408 
ATN(X)= .7853983 
Ok 

3.47 TIME$ 

Format TIME$=x$ 

y$=TIME$ 

where: 

x$ is a string expression indicating the time to 
be set. Valid forms of this string are explained 
below. 

Purpose: To set or retrieve the current time. 

Remarks: Retrieves the current time and assigns it to the 
string variable if TIME$ is the expression in a 
LET or PRINT statement. The current time that is 
retrieved is calculated from the last time set with 
the TIME$=x$ statement. 

If x$ is not a valid string, a "Type mismatch" error 
will result. 

For y$=TIME$,TIME$ returns an B-character string in 
the form hh:mm:ss, where hh is the hour (00 to 23), 
mm is minutes (00 to 59), and ss is seconds (00 to 59). 

For TIME$=x$; x$ may be in one of the following forms: 

hh (sets the hour; minutes and seconds default to 
00) 

hh:mm (sets the hour and minutes; seconds default 
to 00) 

hh:mm:ss (sets the hour, minutes, and seconds) 

- 221 -



If any of the values are out of range, an "Illegal 
function call" error results. In the case, the 
previous value is retained. 

Example: 10 TIME$=1I15:30 11 

20 PRINT TIME$ 

3.48 USR 

Format USR[<digit>] (x) 

where: 

<digit> is in the range 0 to 9 and corresponds to the 
digit supplied with the DEF USR statement for 
the desired routine. 

Purpose: To call the indicated machine language subroutine 
with the argument x. 

Remarks: If <digit> is omitted, USRO is assumed. 

Example: 

The CALL statement is another way to call a machine 
language subroutine. 

See Chapter I, "9. Machine Language Subroutines" for 
complete information on using machine language 
subroutines. 

40 B=T*SIN(y) 
50 C=USR(B/2) 
60 D=USR(B/3) 

- 222 -

( 



( 3.49 

Format VAL (x$) 

Purpose: Returns the numerical value of string x$. 

Remarks: The VAL function strips leading blanks, tabs, and 
linefeeds from the argument string. For example: 

VAL (,. - 3") 

returns -3. 

If x$ is not numeric, then VAL(x$) will return zero(D). 

See the STR$ function for numeric to string conversion. 

Examp Ie: 1 0 I N PUT II I n put hex ad e c i mal val u e : II , H $ 
20 IF H$=II II THEN END 
30 PRINT "&H";H$;II=II;VAL(II&HII+H$) 
40 GOTO 10 
RUN 
Input hexadecimal value:4F 
&H4F=79 
Input hexadecimal value:32 
&H32=50 
Input hexadecimal value:FF 
&HFF=255 
Input hexadecimal value: 
Ok 

3.50 VARPTR 

Format VARPTR«file number» 

VARPTR«variable» 

Purpose: Returns the address in memory of the variable or file 
control block. 

Remarks: The second format returns the address of the first 
byte of data identified with the variable. A value 
must be assigned to the variable prior to the call 
to VARPTR, or an "Illegal function call" error will 
result. Any type variable name may be used (numeric, 
string, array) 

Note: All simple variables should be assigned 
before calling VARPTR for an array, because 
addresses of arrays change whenever a new 
simple variable is assigned. 

- 223 -



VARPTR is usually used to obtain the address of a 
variable or array so that it may be passed to a 
machine language subroutine. A function call of the 
form VARPTR(A(O» is usually specified when passing 
an array, so that the lowest addressed element of the 
array is returned. 

For files, the VARPTR function returns the address 
of the first byte of the File Control Block (FCB) 
for the opened file. This is not the same as the 
MS-DOS file control block. The file must be OPENed 
before the call to VARPTR. 

Offsets to information in the FCB from the address 
returned VARPTR is as follows: 

Offset Length Contents 

o 1 The mode in which the file was opened: 

1 38 

39 2 

41 1 

42 1 

43 3 

46 1 

1 - Input only 
2 - Output only 
4 - Random I/O 

16 - Append only 
32 - Internal use 
64 - Future use 

128 - Internal use 

Disk File Control Block. Refer to 
MS-DOS User's Manual for contents. 

Number of sectors read or written for 
sequential access. For random access, 
it contains the last record number 
+1 read or written. 

Number of bytes in sector when read 
or written. 

Number of bytes left in input buffer. 

Reserved for future expansion. 

Device Number: 

0-9 - Disk A: through J: 
248 - LPT3: 
249 - LPT2: 
250 - COM2: 
251 - COMl: 

- 224 -

( 

( 



Example: 

Offset Length 

47 1 

48 1 

49 1 

50 1 

51 128 

179 2 

181 2 

183 2 

185 1 

186 2 

188 n 

Contents 

252 -
253 - LPTl: 
254 - SCRN: 
255 - KYBD: 

Device width. 

Position in buffer for print. 

Internal use during LOAD/SAVE not 
used for data files. 

Output position used during tab 
expansion. 

Physical data buffer (BUFFER). Used 
to transfer data between MS-DOS and 
GW-BASIC. Use this offset to examine 
data in sequential I/O mode. 

Variable length record size (VRECL). 
Default is 128. Set by length 
option in OPEN statement. 

Current physical record number. 

Current logical record number. 

Future use. 

Disk files only. Output position 
for PRINT#,INPUT# and WRITE#. 

Actual FIELD data buffer. VRECL 
bytes are transferred between BUFFER 
and FIELD on I/O operations. Use 
this offset to examine file data in 
random I/O mode. 

10 OPEN IIDATA.FILII AS #1 
20 FCBADR=VARPTR(#l) I set FCBADR to stqrt of FCB. 
30 DATADR=FCBADR+188'DATADR contq;ns address 
40 'of data buffer. 
50 A$=PEEK(DATADR) 'A$ contains 1st byte in 
60 'data buffer. 

- 225 -



( 

c 

( 



( 

( 

APPENDIX A 

Summary of Error Messages and Codes 

Error Message 

Bad file mode 

Bad file name 

Bad file number 

Bad record number 

Can't continue 

Communication buffer 
overflow 

Code 

54 

64 

52 

63 

17 

69 

Contents 

You tried to use PUT or GET with 
a sequential file or a closed 
file, to MERGE a non-ASCII file, 
or to execute an OPEN with a 
file mode other than input, out
put, append, or random. 

An invalid form is used for the 
filename with BLOAD,BSAVE,KILL, 
OPEN, NAME, or FILES(e.g., a 
filename starting with a period). 

A statement references a file 
with a file number that is not 
OPEN or is out of the range of 
possible file numbers which was 
specified at initialization. Or, 
the device name in the file 
specification is too long or 
invalid, or the filename was too 
long or invalid. 

In a PUT or GET statement, the 
record number is either greater 
than the maximum allowed (32767) 
or equal to zero. 

You tried to use CONT to con
tinue a program that: 
1. has halted due to an error. 
2. has been modified during a 

break in execution, or 
3. does not exist. 

A communication input statement 
was executed but the input 
buffer was already full. You 
should use an ON ERROR statement 
to retry the input when this con
dition occurs. Subsequent in
puts will attempt to clear this 
fault unless characters continue 

- 227 -



Error Message 

Device Fault 

Device I/O Error 

Device Timeout 

Device Unavailable 

Direct statement in file 

Disk full 

Code 

25 

57 

24 

68 

66 

61 

Contents 

to be received faster than the 
program can process them. If 
this is the case there are 
several things you might do: 

1. Increase the size of the 
communications buffer. 

2. Implement a "hand-shaking" 
protocol with the other com
puter to tell it to stop 
sending long enough so you 
can catch up. 

3. Use a lower baud rate to 
transmit and receive. 

Indicates a hardware error in
dication returned by an inter
face adapter. 

An error occurred on a device 
I/O operation. MS-DOS cannot 
recover from the error. 

BASIC did not receive informa
tion from an input/output device 
within a predetermined amount 
of time. 

You tried to OPEN a file to a 
device which doesn't exist. 
Either you do not have the 
hardware to support the device 
(such as printer adapters for a 
second or third printer), or 
you have disabled the device. 

A direct statement was encoun
tered while LOADing or CHAINing 
to an ASCII format file. The 
LOAD or CHAIN is terminated. 
The ASCII file should consist 
only of statements preceded by 
line numbers. This may occur 
because of a line feed charac
ter in the input stream. 

All disk storage space is 
in use. Files will be closed 
when this error occurs. 

- 228 -

( 

( 



( 
Error Message 

Disk Media Error 

Disk not Ready 

Disk write protected 

Division by zero 

Duplicate Definition 

FIELD overflow 

Code 

72 

71 

70 

11 

10 

50 

Contents 

The controller attachment card 
has detected a hardware or media 
fault. Usually this means the 
disk has gone bad. Copy any 
existing files to a new disk 
and re-format the bad disk. 
If formatting fails, the disk 
should be discarded. 

The disk drive door is open or 
a disk is not in the drive. 
Place the correct disk in the 
drive and continue the program. 

You tried to write to a disk 
that is write protected. 

In an expression you tried to 
divide by zero, or you tried to 
raise zero to a negative power. 
Machine infinity with the sign 
of the numerator is supplied as 
the result of the division, or 
positive machine infinity is 
supplied as the result of the 
exponentiation, and execution 
continues. 

You tried to define the size of 
the same array twice. This may 
happen in one of several ways: 

1. two DIM statements are given 
for the same array. 

2. a DIM statement is given for 
an array after the default 
dimension or 10 has been 
established for that array. 

3. an OPTION BASE statement has 
been encountered after an 
array has been dimensioned, 
either by a DIM statement or 
by default. 

A FIELD statement is attempting 
to allocate more bytes than were 
specified for the record length 
of a random file in the OPEN 
statement. Or, the end of the 

- 229 -



Error Message 

File already exists 

File already open 

File not found 

For without NEXT 

Illegal direct 

Illegal function call 

Code 

58 

55 

53 

26 

12 

5 

Contents 

FIELD buffer was encountered 
while doing sequential I/O 
(PRINT#,WRITE#,INPUT#,etc.) to 
a random file. 

The filename specified in a 
NAME statment is identical to a 
filename already in use on the 
disk~ 

You tried to OPEN a file for 
sequential output or append, 
and the file is already OPEN. 
Or, you tried to KILL a file 
that is open. 

A LOAD,KILL,NAME,FILES, or OPEN 
references a file that does not 
exist on the disk in the 
specified drive. 

A FOR was encountered without a 
matching NEXT. That is, a FOR 
was active when an END, STOP, or 
RETURN was encountered, 

A statement that is invalid in 
direct mode is entered as a 
direct mode command. For 
e~ample, DEF FN. 

A parameter that is out of range 
is passed to a system function. 
The error may also occur as the 
result of: 

1. a negative or unreasonably 
large subscript 

2. a negative mantissa with a 
non-integer exponent 

3. a call to a USR function for 
which the starting address 
has not yet been given 

4. a negative record number on 
GET or PUT 

5. an improper argument to a 
function or statement 

6. an attempt to list or edit a 
protected BASIC program 

- 230 -

( 

c 



( 
Error Message 

Input past end 

Internal error 

Line buffer overflow 

Missing operand 

NEXT without FOR 

No RESUME 

Out of DATA 

Out of memory 

Code 

62 

51 

23 

22 

1 

19 

4 

7 

Contents 

This is an end-of-file error. 
An input statement was executed 
for a null (empty) file, or 
after all the data in a sequen
tial file was already input. 
To avoid this error, use the 
EOF function to detect the end 
of file. This error also occurs 
if you try to read from a file 
that was opened for output or 
append. 

An internal malfunction has 
occurred in BASIC. Report to 
your computer dealer the con
ditions under which the message 
appeared. 

You tried to enter a line that 
has too many characters. 

An expression contains an oper
ator, such as * or OR, with no 
operand following it. 

A variable in a NEXT statement 
does not correspond to any 
previously executed and un
matched FOR statement variable. 

The program branched to an ac
tive error trapping routine as 
a result of an error condition 
or an ERROR statement. The 
routine does not have a RESUME 
statement. (An END,STOP, or 
RETURN was found before a 
RESUME statement.) 

A READ statement is executed 
when there are no DATA state
ments with unread data remain
ing in the program. 

A program is too large, has too 
many FOR loops or GOSUBs, too 
many variables, expressions that 
are too complicated, or complex 
PAINTing. You may want to use 

- 231 -



Error Message 

Out of Paper 

Out of string space 

Overflow 

Rename across disks 

RESUME without error 

RETURN without GOSUB 

Code 

27 

14 

6 

74 

20 

3 

Contents 

CLEAR at the beginning of your 
program to set aside more stack 
space or memory area. 

The printer is out of paper, or 
the printer is not turned on. 
You should insert paper (if 
necessary), verify that the 
printer is properly connected 
and that the power is on. Then 
continue the program. 

BASIC will allocate string 
space dynamically, until it 
runs out of memory. This mes
sage means that string variables 
have caused BASIC to exceed the 
amount of free memory remaining 
after doing housecleaning. 

The magnitude of a number is 
too large to be represented in 
BASIC's number format. Integer 
overflow will cause execution 
to stop. 
Otherwise, machine infinity 
with the appropriate sign is 
supplied as the result and 
execution continues. 

Note: If a number is too small 
to be reprepented ~n 
BASIC's number format, 
then we have an under
flow condition. If this 
occurs, the result is 
zero and execution con
tinues without an error. 

You tried to rename across disks 
by using NAME command. 

A RESUME statement is encoun~ 
tered before an error trapping 
routine is entered, 

A RETURN statement is encoun
tered for which there is no 
previous unmatched GOSUB 
statement. 

- 232 -

( 

( 



( Error Message 

String formula too 
comples 

String too long 

Subscript out of 
range 

Syntax error 

Too many files 

Type mismatch 

Undefined line number 

Underfined user function 

Unprintable error 

Code 

16 

15 

9 

2 

67 

13 

8 

18 

21 
28 

Contents 

A string expression is too long 
or too complex. The expression 
should be broken into smaller 
expressions. 

You _tried to create a string 
more than 255 characters long. 

An array element is referenced 
either with a subscript that is 
outside the dimensions of the 
array, or with the wrong number 
of subscripts. You may have 
put a subscript on a variable 
that is not an array. Or you 
may have incorrectly coded a 
built-in function. 

A line is encountered that con
tains some incorrect sequence 
of characters (such as unmatched 
parenthesis, misspelled command 
or statement, incorrect punctu
ation, etc.). 

An attempt is made to create a 
new file (using SAVE or OPEN) 
when all directory entries on 
the disk are full, or the 
file specification is invalid. 

You gave a string value where 
a numeric value was expected, 
or you had a numeric value in 
place of a string value. This 
error may also be caused by 
trying to SWAP single and double 
precision values, etc. 

A line reference in a statement 
or command is to a nonexistent 
line. 

You called a function before 
defining it with the DEF FN 
statement. 

An error message is not avail
able for the error condition 

- 233 -



Error Message 

WEND without WHILE 

WHILE without WEND 

Code 

31- 49 
56 

59 - 60 
65 

75-255 

30 

29 

Contents 

which exists. This is usually 
caused by an ERROR statement 
with an undefined error code. 

A WEND was encountered before a 
matching WHILE was executed. 

A WHILE statement does not have 
a matching WEND. That is, a 
WHILE was still active when an 
END,STOP, or RETURN statement 
was found. 

- 234 -

( 



( APPENDIX B 

GW-BASIC Compiler 

B.I Outline 

The GW-BASIC is provided with a compiler. Similar to an inter
preter, the compiler is a program that translates a source pro
gram of BASIC into a machine language program. While the 
interpreter translates and executes line by line in executing a 
program, the compiler translate the whole of source program into 
relocatable machine language before executing the program and 
prepares an object program. 

Thus, translation into machine language is performed at the 
time of compiling, and therefore, translation of the source 
program is not made at the time of program execution. Further, 
branch address of variable, GO TO statement and GOSUB statement 
is referred by absolute address at the time of program execu
tion, it is not necessary to examine a variable list or line 
number during program execution. Accordingly, execution speed 
is faster than execution by an interpreter. Brief explanation 
on the GW-BASIC compiler will be given below. 

Module structure of GW-BASIC compiler is as follows. 

(1) BASCOM. COM (GW-BASIC compiler) 
Translates a source program of BASIC into a machine language 
program and prepares relocatable and linkable object file 
(xxxxxxxx.OBJ) • 

(2) BASRUNG.EXE (runtime module) 
This is the module that includes runtime routine necessary 
for execution of prepared object program. It is loaded on 
the memory together with the program at the time of execu
tion. 

(3) BASRUN.LIB (runtime library) 
This is a library module used for calling of a user program 
and interface with runtime routine of BASRUNG.EXE. Connected 
with the user program at the time of linking. 

(4) BASCOM. LIB (runtime library) 
This is a group of object modules including routine having 
nearly the same function with BASRUNG.EXE. It is used to 
prepare a file (xxxxxxxx.EXE) executable without runtime 
module. 

- 235 -



The flow of processes from compiling a source program of 
BASIC to execution is shown below. The source program to 
be compiled must be a file of ASCII format. Accordlngly, a 
source program prepared by uSlng an editor of BASIC inter
preter must be saved in ASCII format. 

MYPROG.BAS (GW-BASIC source program) 

BASCOM. COM Compile 
I 
I 
I 

i 1 I 

IMYPROG2.0BJ MYPROG.LST MYPROG.OBJ BASCOM.LIB BASRUN.LIB 

l 1 J 

LINK.EXE Link 

MYPROG.MAP MYPROG.EXE 

_ IBASRUNGoEXE! 
over~~y,~~1~. __________ ~. 

r------I.-----, 
~ 

MYP ROG r:J1 ~ ~ ~ 
~ Execute 

- 236 -

( 



( B.2 How to operate the compiler 

There are two ways of operation of the compiler. One is to 
specify parameter by interactive type according to prompt of 
the compiler without specifying parameter when inputting com
piler calling command. The other is to enumerate parameter 
when inputting compiler calling command. 

(1) Method of specifying parameter by interactive type 

1) Enter lli]1Nlli![Q][Q][RJ Q]when OS mode ("A> II is displayed) to 
call the compiler. 

2) The following message is displayed. 

Microsoft BASIC Compiler 
Version x.xx 
(C) Copyright Microsoft Corp 1982 

Source filename [.BAS]: 

3) Input source file name of GW-BASIC to be compiled. 
When the extension is omitted, .BAS is automatically 
added. For instance, when a source-file named 
MYPROG.BAS is to be compiled, input 1Ml1Xl~[RJ[Q][§J~. 

Source filename [.BAS]: MYPROG Gil 
Object filename [MYPROG.OBJ]: 

4) Input object file name to be prepared. When the exten
sion is omitted, .OBJ is added automatically. 
However, if the file name displayed in square bracket 
will do, input 6iJ key only. 

Source filename [.BAS]: MYPROG GD 
Object filename [MYPROG.OBJ]: 6D 
Source listing [NUL.LST]: 

5) Input source list file name. 

* When it is not necessary to prepare a source list 
file ••• Q] 

* When it is required to output a source list on the 
screen ••• [QJ [Q] lliI IdI 

* When it is required to output a source list to a 
printer [1] [£] !XI JI] Q] ' 

- 237 -



* When it is required to output a source list to a 
disk file ••• <filename> bil 

In specification of file name when outputting a source 
list, if the ~xtension is omitted, .LST is added auto
matically. ~ 

Specification of compilation switch which will be mentioned 
later is applicable to any of file name specification of source 
file, object file and source list file. 

(2) Method that enumerates the parameter 

Specify parameter according to following form. 

A> BASCOM <source file name>, <object file name>, <source list 
file name>Q] 

Method of specification of file name of each parameter and 
method of omitting are the same with the case where specifica
tion is made according to prompt of the compiler described in 
(1). The same applies to specification of compilation switch. 

* When file name specification is deficient, prompt correspond
ing to it is returned. 

Example: A > BASCOM MYPROG IdI 
As only source file name is specified, 
prompt for object file and source list 
file is returned. 

* When parameter specification is terminated with semicolon, 
file at the time of omitting is supposed for succeeding 
parameter. Prompt is not returned. 

Example: A> BASCOM MYPROG; I:il 
MYPROG.OBJ is supposed as an object 
file, and NUL.LST is supposed as a source 
list file. 

* When parameter is omitted after a cornrna(,) which is an end 
of parameter specification, source file name and the exten~ 
sion at the time of omitting are supposed as the parameter. 

Example 1: A > BASCOM MYPROG. , ~ 
MYPROG.OBJ is supposed as an object 
file and MYPROG.LST is supposed as 
a source list file. However, prompt 
of 

Source listing MYPROG.LST : 
is returned • 

... 238 -

( 



( Example 2: A BASCOM MYPROG,,;~ 
MYPROG.OBJ is supposed as object file 
and MYPROG.LST is supposed as a source 
list file. Prompt is not returned. 

B.3 Compilation switch 

Compilation switches can be used for extension and optimization 
of compiling function. Two or more switches can be used at a 
time. However, each switch must start with a slash(/). 

Example 1: A > BASCOM MYPROG/A" NUL Q] 

Example 2: A > BASCOM MYPROG2, /0; ~ 

Example 3: A > BASCOM MYPROG3 
Object filename MYPROG3.0BJ /X/D ~ 
Source listing NUL.LST : LST: CD 

----==-

A table of compilation switches is shown in Table B.1. 

Table B.I Table of compilation switches 

Explanation 

/E Specified when ON ERROR GOTO and RESUME line 
number are included in the program. 

Specified when ON ERROR GOTO and RESUME, 
/x RESUME NEXT, RESUME 0 are included in the 

program. 

/v Test of event trapping is performed for each 
statement. 

/w Test of event trapping is performed for each 
line. 

/4 
Use Microsoft 4.51 scanning conversions (not 
allowed together with /N). 

/T Use Microsoft 4.51 execution conversions. 

/A Outputs to a source list file inclusive of a 
listing of object code. 

- 239 -



Explanation 

/C:combuf Sets the size of communication buffer. 

/D 
Generates debug code for error checking when 
program runs. 

Specified when making the line number to 

/N 
optional order or removing. /N is a convenient 
switch when taking text of other file into the 
source program using INCLUDE metacommand. 

/R Stores multi-dimensional array in the memory 
making a line in a unit. 

Outputs a character string enclosed by quotation 
/S marks on an object file ( .OBJ) on a disk in-

stead of data domain in the memory. 

/0 Specified when BASRUNG.EXE runtime module is 
not used. 

Notice: /0 switch 
When /0 switch is not specified, the program auto
matically overlays BASRUNG.EXE runtime module and 
uses at the time of execution. Even when the size 
of the program itself is small, memory of about 30K 
byte becomes necessary for BASRUNG.EXE. When /0 
switch is specified, load of the program and speed 
of execution becomes greater as BASRUNG.EXE is not 
overlaid, and the rate of occupancy becomes small. 
However, it is not possible to own jointly the data 
between programs connected by COMMON statement. As 
the possibility of incorporation of similar execution 
module in all execution files is high, storing 
efficiency of the disk become poor. 

B.4 How to operate the linker 

The linker converts the object file (xxxxxxxx. OBJ) prepared by 
the compiler into excutable program linking with execution 
library, and prepares an execution file. The linker can be 
operated by two different ways. The first method does not 
specify the parameter when inputting linker .calling command, 
and specifys the parameter by interactive type according to 
prompt of the linker. The second method enumerates and 
specifies the parameter when inputting the linker calling 
command. For details of the linker (LINK) refer to "MS-DOS 
user's manual." 

- 240 -

( 



( 
(1) Method of specifying the parameter by interactive type 

1) Input IIJIIl[NJIRTWlwhen OS mode to call the linker. 

2) Following message is displayed. 

Microsoft Object Linker Vx.xx 
(C) Copyright 1981 by Microsoft Inc. 

Object Modules [.OBJ]: 

3) Input the name,ofobject file (xxxxxxxx.OBJ)to be linked. 
When plural object files are to be linked, mark off 
each file with space or a plus mark(+). When a plus 
mark is inputted immediately before pressing the car
riage return key, the same prompt is returned again. 
For instance, to link two object files, i.e. MYPROG. 
OBJ and MYPROG2. OBJ, input IHlIXlIm [B] [QJ I§] [±] I!1IIXl [E] [RJ[Q] lm 
~ Q). 

Object Modules [.OBJ]: MYPROG+MYPROG2~ 
Run File [MYPROG.EXE]: 

4) Input the name of execution file. If only the carriage 
return key is depressed, the head object file name .EXE 
inputted in 3) is supposed. 

Object Modules [.OBJ]: MYPROG+MYPROG2~ 
Run File [MYPROG.EXE]: ~ 
List File [NUL.MAP]: 

5) Input the name of list file. If only the carriage return 
key is depressed, the list file is not p repared. 

Object Modules [. OBJ]: MYPROG+MYPROG2 ~ 
Run File [MYPROG.EXE]: ~ 
List File [NUL.MAP]: ~ 
Libraries [.LIB]: 

6) Input the name of library file (BASRUN.LIB or BASCOM.LIB). 
When the extension is omitted, .LIB is added automati
cally. 

- 241 -



(2) Method that enumerates the parameter 

specify the parameter according to the following format. 

A> LINK <object file list>,<execution file>,<list file> 
, < library file list> I;j] 

Method of file specification and omitting of each parameter are 
the same with the case when specification is made according to 
prompt of the linker mentioned in (1). 

* When file specification is deficient, corresponding prompt 
is returned. 

* When parameter specification is terminated with a semicolon(;), 
file at the time of omission is supposed for succeeding 
parameters. Prompt is not returned. 

B,5 Execution of pr09ram 

Inputting of the program name only is required for execution 
of compiled and linked program irrespective of presence of /0 
switch at the time of compiling. In this case, omission of 
the extension (.EXE) is possible. 

Example: 

When /0 switch is not specified at the time of compiling, load 
BASRUNG.EXE runtime module when executing the program. It is 
also possible to execute another program out of programs. 

Example 1: 10 RUN "MYPROG2" 
MYPROG2.EXE is loaded and executed. 

Example 2: 10 CHAIN "MYPROG2" 
MYPROG2.EXE is loaded and executed. 

In the case of Example 1, BASRUNG.EXE is reloaded. When the 
program is executed using CHAIN statement as in Example 2, 
BASRUNG.EXE is not loaded again. 

B,6 Instruction for exclusive use of compiler(metacommand) 

Metacommand is effective only for the compiler. To distinguish 
it from BASIC command, "$" mark is added to the head of the 
command. Metacommand is used to control operation of the com
piler, and normally used in REM statement. By this way no 
problem occurs when operating by the interpreter. 

Example: REM $LINESIZE:132 

- 242 -

( 



( 
Table of rnetacommand is shown in Table B.2. 

Table B.2 Table of metacommand 

Metacommand Explanation 

$INCLUDE : ' filename' Inputs source file to the position of $INCLUDE 
command from the file specified by 'filename ' • 
'filename' must be ASCII file. 

$LINESIZE: n The length of one line of the source list is 
specified. n is integer in the range of 41 through 
255 • n = 80 is supposed when $LINESIZE command is 
omitted. 

$LIST+ Presence of output of the source list is specified. 
$LIST- Succeeding source list is outputted and when $LIST-, 

output of succeeding source list is stopped. When 
NUL.LST is specified as the source list file at the 
time of compiling, the source list is not outputted 
even if LIST+ is specified. 

$OCODE+ In the case of $OCODE+, the code address and 
$OCODE- operation mnemonic for each line of succeeding 

source list are outputted, and when $OCODE-, 
succeeding output is stopped. If NUL. LST is 
specified as the source list file at the time of 
compiling, the code address and operation mnemonic 
are not outputted even when $OCODE+ is specified. 
When at least one of the switches is specified, 
$OCODE- is not effective. 

$ PAGE Page of source list output is renewed just after 
$PAGE command. 

$PAGEIF: n Page is renewed when remaining number of printable 
lines is less than n (1-255). 

$PAGESIZE: n Number of lines per page is specified. n is 
integer in the range of 41 through 255, and if 
$PAGESIZE command is omitted, n = 66 is supposed. 

$SKIP: n n (1-255) line is renewed when $SKIP is detected. 

$SUBTITLE: ' string' A subtitle specified by 'string' is printed under 
the title of each page. 

$TITLE: 'string' A title specified by 'string' is printed at the 
top of each page. 'string' is a row of characters 
less than 60 characters. 

- 243 -



B.7 Difference between GW-BASIC Compiler and Interpreter 

(1) Operation Difference 

The compiler interacts with the console only to read compiler 
command. These specify what files are to be compiled. There 
is no "direct mode," as with the GW-BASIC interpreter. Commands 
that are usually issued in the direct mode with the GW-BASIC 
interpreter are not implemented on the compiler. 

The following statements and commands are not implemented and 
will generate an error message. 

AUTO BLOAD BSAVE CONT DELETE 
EDIT LIST LLIST LOAD MERGE 
NEW RENUM SAVE 

Because there is no direct mode for typing in programs or edit 
mode for editing programs, use the GW-BASIC interpreter for 
creating and editing programs. If you use the interpreter, be 
sure to save the file with the A (ASCII format) option. 

The compiler cannot accept a physical line that is more than 253 
characters in length. A logical statement, however, may contain 
as may physical lines as desired. Use line feed to start a new 
physical line within a logical statement. 

To reduce the size of the compiled program, there are no program 
line numbers included in the object code generated by the com
piler unless the ID, lX, or IE switch is set in the compiler 
command. Error messages, therefore, contain the address where 
the error occurred, instead of a line number. The complier 
listing and the map generated by LINK are used to identify the 
line that has an error. It is GW-BASIC interpreter before at
tempting to compile them. 

(2) Language difference 

Most programs that run on the GW-BASIC interpreter will run on 
the GW-BASIC compiler with little or no change. However, it is 
necessary to note differences in the use of the following 
program statements and function: 

1. CALL 
The variable name field in the CALL statement must contain 
an external symbol, i.e., one that is recognized by LINK 
as a global symbol. This routine must be supplied by the 
user as a machine language subroutine. 

2. CHAIN and RUN 

c 

The CHAIN statement is used to chain a new program overlay 
using the runtime module. The RUN statement is to be ~ 
used to execute any executable file. 

- 244 -



( 3. CLEAR 
The CLEAR statement is only supposed in compiled programs 
using the runtime module. 

4. COMMON 
The COMMON statement must appear before any executable 
statement. 

5. DEFINT/SNG/DBL/STR 
The compiler does not "execute" DEFxxx statements; it 
reacts to the static occurrence of these statements, 
regardless of the order in which program lines are exe
cuted. A DEFxxx statement takes effect as soon as its 
line is encountered. Once the type has been defined for 
a given variable, it remains in effect until the end of 
the program or until a different DEFxxx statement with 
that variable takes effect. 

6. DIM 
The DIM statement is similar to the DEFxxx statement in 
that it is scanned rather than executed. This is, DIM 
takes effect when its line is encountered. If the default 
dimension (10) has already been established for an array 
variable and that variable is later encountered in a DIM 
statement, a "Redimensioned array" error results. 

Also note that the values of the subscripts in a DIM 
statement must be integer constants; they may not be 
variab1e5,a arithmetic expressions, or floating point 
values. For example, 

DIM A1(I) 
DIM A1(3+4) 

are both illegal. 

7. END 
During execution of a compiled program, an END statement 
closes files and returns control to the operating system. 
The compiler assumes an END statement at the end of the 
program, so "running off the end" products proper program 
termination. 

8. FOR/NEXT and WHILE/WEND 
FOR/NEXT and WHILE/WEND loops must be statically nested. 

9. ON ERROR GOTO/RESUME line number 
If a program contains ON ERROR GOTO and RESUME line 
number statements, the /E compilation switch must be used. 
If the RESUME NEXT, RESUME, or RESUME 0 form is used, the 
/X switch must also be included. 

- 245 -



10. REM 
REM statements or remarks starting with a single 
quotation mark do not take up time or space during 
execution, and so may be used as freely as desired. 

11. STOP 
The STOP statement is identical to the END statement. 
Open files are closed and control returns to the operat
ing system. 

12. TRON/TROFF 
In order to use TRON/TROFF, the /D compilation switch 
must be used. Otherwise, TRON and TROFF are ignored 
and a warning message is generated. 

13. USR Function 
USR function are significantly difference from the inter
preter versions. The argument to the USR function is 
ignored and an integer result is returned in the HL 
registers. It is recommended that USR function be re
placed by the CALL statement. 

(3) Expression evaluation 

During expression evaluation, the operands of each operator are 
converted to the same type, that of the most precise operand. 
For example, 

QR=J%+A!+Q# 

causes J% to be converted to single precision and added to A!. 
This results is converted to double precision and added to Q#. 

The compiler is more limited than the interpreter in handling 
numeric overflow. For example, when run on the interpreter the 
following program 

1%=20000 
J%=20000 
K%=-30000 
M%=I%+J%+K% 

yield 10000 for M%. 
number is too large, 
point number. K% is 
tracted. The result 
to integer and saved 

That is, it adds 1% to J% and, because the 
it converts the result into a floating 
then converted to floating point and sub
of 10000 is found, and is converted back 
as M%. 

The compiler, however, must make type conversion decisions dur
ing compilation. It cannot defer until the actual values are 
known. Thus, the compiler would generate code to perform the 
entire operation in integer mode. If the /D switch were set, 

- 246 -

( 



( 

( 

the error would be detected. Otherwise, an incorrect answer 
would be produced. 

In order to produce otpimum efficiency in the compiled program, 
the compiler may perform any number of valid algebraic transfor
mations before generating the code. For example, the program 

1%=20000 
J%=-18000 
K%=20000 
M%=I%+J%+K% 

could produce an incorrect result when run. If the compiler 
actually performs the arithmetic in the order shown, no overflow 
occurs. However, if the compiler performs I%+K% first and then 
adds j%, an overflow will occur. The compiler follows the 
rules for operator precedence and parenthetic modification of 
such precedence, but no other guarantee of evaluation order can 
be made. 

(4) Integer variables 

In order to produce the fastest and most compact object code 
possible, make maximum use of integer variables. For example, 
this program 

FOR 1=1 to 10 
A(I)=O 

NEXT I 

can execute approximately 30 times faster by simply substituting 
"1%" for "I". It is especially advantageous to use integer 
variables to compute array subscripts. The generated code is 
significantly faster and more compact. 

- 247 -



APPENDIX C 
ASCll Character Code Table 

The following table lists all the ASCll codes (in hexadecimal) 
and their associated characters. 

~ 0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

0 .... (space) (I @ p , 
p , 

.f (null ) E r .-
1 JL ± , 

I A Q a q ® L § A J[ L · 
2 .1 ~ 

., 
2 B R b r e J A a J a x 

3 ! ~ # 3 C S c s • 6 If , ., 
4 1 :::::; $ q 0 T d t • I 0 $ L I 
5 • 'V % 5 E U e u + a a! t --
6 0 7f s< 6 F U f v ~ 1 0 IJ .j. + 
7 (beep) 2 • 7 G tJ 9 III • L 0 

.. 
~ ~ 1J 

8 (back- 3 ( 8 H X h x C j B • -+- i space) 0 

9 (tab) 4 ) 9 I Y i Y 0 
, . 

J.l "T'" a 1 T 
A (line >t- · J Z j z rrJ 1 D 

6 .L 
feed) 1 · 

8 (hane) + · K { k )" 0 F, Y ~ ~ 2 
, .. 

(' (cIs) (cursor < L "- 1 I ~ ~ e 0: -nghl) • I 

0 carrige cur so M ] In ) . 
~ 

, 
13 1 return) left) - = c:. u 

• > N 
A. .-.- i ~ 

, r E curso n e = up) · 
F L cursor / ? 0 0 I , I I e i I down) -

These characters can be displayed using PRINT CHR$(n), where 
n is the ASCll code. 

- 248 -

( 



( APPENDIX D 

Hard COpy 

outputting the contents displayed on the screen to a printer is 
called "to take a hard copy". Only the CANON dot impact printer 
A-1200 and the CANON color printer A-12l0 can take hard copies. 

D.I Loading of handler 

To take a hard copy, it is necessary to load various handlers 
on the memory before starting GW-BASIC. Handlers to be loaded 
are as follows: 

a. When A-1200 is used: 

A > [g] [R] rID IN! [Q] Wl 
A > 1M rn ~ [Q] [Q][Zlllil [g [QJ IRI [Xl ~ 

b. When A-12l0 is used: 

A > ~ [R] rID IN! [Q] Q] 

A > IA"][I] ~ [II [Q] ItJ llill9 [Q] IRI 00 Q] 

For details of handlers refer to "MS-DOS User's manual". 

D.2 How to take a hard COpy 

Input the following keys when taking of a hard copy is required. 

ICTRL\ + I <) I 
(Depress the clear screen key while depressing the 
control key and shift key.) 

When this operation is made during execution of the program, 
execution of the program is stopped, and the contents displayed 
on the screen is outputted to the printer. When hard copy 
output is completed, execution of the program is resumed. When 
outputting the contents displayed on the Color Display to the 
printer A-12l0, a color which is the nearest to the color dis
played on the screen is selected and outputted. Accordingly, 
it sometimes happens that the contents displayed by different 
colors on the screen is outputted to the printer in the same 
color. No problem occurs when only basic colors of the printer 
(black, blue, green, cyan, red, magenta, yellow, white) are 

- 249 --



used. However, the contents displayed in white on the screen 
is outputted to the printer in black, and the contents displayed 
in black on the screen is outputted to the printer in white. 

- 250 -

( 



( I N D E X 

A 

ABS •.••••••..••.•••••••••.•.• 198 
absolute coordinates 
address 
ALT key 
AND 
APPEND mode 

· ...... . 81 
· ...... . 89 
· ...... . 12 

• ·44 
··71 

arithmetic operator • ••• ·.42 
ASC •••••••••••••••••••• 198 
array ................. . ··35 

• ·69 ASCII format 
assignment statement ··53 
ATN • • • • • • • • •••••••••• • ·198 
AUTO 

background 
BEEP 
baud rate 
BLOAD 

B 

packed binary format •• 
blinking 
BSAVE 

c 

• ·104 

····85 
·104 
·97 

••• ·105 
·75 
·84 

••• ·106 

····95,107 
••• ·199 

CALL 
CDBL 
CHAIN ......... . -108 
character constant ••••••••••• 31 
character function ••••••••••• 50 
character set ••••••••••••••• 15 
CHR$ 
CINT 
CIRCLE 
CLEAR 
click sound 
CLOSE 

• ·199 
·.200 

• ·110 
• .111 

· .............. . 13 

• ·112 
...................... . 113 CLS 

COLOR 
color No. 

• .85,113 
• .82 

command · ....... .... . ·19 
COMMON ....... · ....... ••••• ·116 
coIlUllunication port · ...... . 97 
COM(n) .............. · ..... .• 115 

i 

compilation switch 
compiler •••••• 

· ..... . 239 
• • 235 

concatenation 
constant 
CONT 
coordinates 
COpy command 
COS 
CSNG 

• ·48 
• • 31 

·············27,117 
· ........... . 81 

• ••••••••• 5 
• ••••• ·200 

••••••••••••• ·201 
CSRLIN 
CTRL key 

•••••••••••••••••••• 201 
••••••••• 10 

cursor control mode 
CVI, CVS, CVD 

• ••••••••• 8 
• •••••••• ·202 

o 

DATA ....................... . 117 
data file 
DATE $ 
debugging 
DEF FN 

................. . 70 
· ........ ·203 

· ...... ·29 
• •••••• ·118 

DEF -INT, 
DEF SEG 

-SNG, -DBL, -STR····119 

DEF USR 
DELETE 
device name 
DIM •••••••• 
DISKCOPY command 

• ••••••• ·120 
· .......... . -121 
• ••••••••••• ·121 

·66 
·122 

• ••••••• 3 
disk formatting ·············2 
double precision type ·33 
DRAW • • • • •••••• • ••••••• •• ·123 

E 

EDIT 
editing keys 
editor •••••• 
END 

•••••••• • •••••••• 29,125 
................ . 24 

·19 
·125 

EOF •········· .... ·· .. ··.·.·.·204 
EQV •••••••••••• 

ERASE 
ERR, ERL 
ERROR 
error interrupt 
error message 
error processing 
error simulation 

·46 
·126 

···204 
•• ·126 
••• 98 

· ..... . 29 
· ...... ·98 
· ...... . 99 



event trapping ••••••••••• 
executable statement 
execution file 
EXP ••••••••••• 
exponentiation 
expression 

FIELD 
file 
file descriptor 
file name 
FILES 
FIX 

F 

fixed-point type 
floating-point accumulator 
floating-point type 
foreground 
FORMAT command 
format control 
format conversion 
format notation ••••••• 
FOR ••• NEXT 
FRE 

• ••• 239 
• ••• 20 
• ••• 241 
• ••• 205 

• • 42 
• • 41 

····128 
• ••• 65 

• • 65 
···66 
···68,129 

·206 
·32 

• •• 92 
32 
85 

• •• 2 
55 
75 

• ·103 
• • 62,130 

206 
full screen editor ••••••• 23 

··49 function •••••• 
function key 

GET (Files) 
GET (Graphics) 
GOSUB ••• RETURN 
GO TO 
graphic pattern 
graphics •••••• 

G 

H 

hard copy 
hexadecimal constant 
HEX$ 
home position 

• • 8 

131 
87,132 

••• 63,134 
• •• 61,135 
• •• 87 

• •••• 81 

• ••• ·249 
.···.32 
• •••• 207 
• •••• 8 

ii 

I 

IF ••• THEN ••• ELSE, 
IF ••• GOTO ••• ELSE •••••••••• 61,135 

IMP 
INKEY$ 
INP 
INPUT 
input interrupt 
INPUT mode 

. ........ . 46 
•• 59,207 
•• 207 

··58,137 
•••••• ·97 
...... . 71 

input statement ······58 
INPUT $ ••••••••••••••••••••• ·208 

INPUT# ············138 
INSTR 
INT 
integer type 
interpreter 

KEY 
keyboard 
KEY(n) 
KILL 

LEFT$ 
LEN 
LET 
library file 
LINE ••••••• 
LINE INPUT 
LINE INPUT# 
line number 
linker 
LIST 

............ ·209 
••••••••••••••• 209 

. . . . . . . . • 31 
• ·19 

K 

· ••••••••••••• 139 
• ••••••••••••• 6 

••••••••••••••• 141 
............... . 143 

L 

......... . 210 
.210 
·143 
.241 
·144 
.146 

•••••• 146 
••••• 20 

•• 240 
• .147 

........... . 148 
••••• 70,149 
••••• 210 

· ............ . 150 

LLIST 
LOAD 
LOC 
LOCATE 
LOF 
LOG 

..............•.. . 211 
•••••••• 211 

logical operator ••• •• ••• 43 
loop variable .·.··.·······62 
LPOS ••••••••••••• .212 
LPRINT, LPRINT USING •• •••• .150 
LSET ••••••••••••••••••••••• ·151 

( 

c 



( 
machine language 

subroutine 

M 

• • • • • • • • • • • 89 
metacornrnand 
MERGE 

....•........•. ·242 
.................. . 151 

MID$ • '152,212 
MI<I$, MKS$, 
MOD 

MKD$ • ·213 
• ·42 

N 

N~ •••••••••••••••••••• • -153 
nesting •••••••••••••••••••• 64 
NEW ••••••••••••••••••• -153 
non-executable statement 
numeric constant 

••• 20 
"'31 

numeric function 

object file 
octal constant 
ocr$ 

o 

offset . . . . . . . . . . 

•••••••••• 49 

····237 
•••• 32 

.......... ·213 
· ..... ·89 

ON COM (n) GO SUB . . . . . . . · ..... '153 
ON ERROR GOTO . . . . . . . . · ..... '155 
ON ••• GOSUB, ON ••• GOTO 
ON KEY(n) GOSUB 

••••••• '64,155 

OPEN 
OPEN "COM •••••••• 
OPTION BASE ••••••••• 
OR •••••••••••••••••• 

OUT 
OUTPUT mode 
output statement 
overlay ••••••••• 

p 

• ••••• '156 
• ••••• '157 

'160 
'162 

• •• 45 
••••••• '162 

•• 71 
•• 54 
•• 240 

PAINT •••••••••••••••••••••••• 8S, 162 
palette 
PALETTE, 
parity 
PEEK 
PLAY 
POINT 
POKE 

.•.................. . 82 
PALETTE USING •••• 82,163 

•••• 97 
........... ·214 

· .... . -166 
• •••••• 214 
· .... . -167 

POS •••••• • •••••• 214 
PRESET .......... ·168 

iii 

PRINT ..................... -54,169 
PRINT USING • '55,171 
PRINT#, PRINT# USING • '174 
priori ty ••••••••••• • '47 
program 
program file 
PSET ••••••••• 
PUT (Files) 
PUT (Graphics) 

R 

.... . -19 
· .......... ·68 
· ......... . -176 
· .......... ·177 

············87,178 

random buffer ••••••••••••••• 75 
random file • ••••••••••••••••• 74 
RANDOMIZE ••••••• •••••• , •••••• 58,183 
READ 
record 

.................... . 71 

record length 
register ••••••• 
REM 
RENUM 

••• 75 
••• 89 

• ••• 184 
• ••• 185 
• ••• 43 

relational operator •• 81 
relative coordinates •• 13 
Repeat function ••••••••• 16 
reserved words •••••••••••••• 186 
RESET ••••••••••••••• 186 
RESTORE 
RESUME 
RETURN 
RIGHT$ 
RND 
RS232C 
RSET 
RUN 

• •••••••• 186 
• •••••••• 187 
· ....... . 215 

.215 
· ..... ·97 
• ••••• ·151 
• •••••• 27,188 

........... . 235 

runtime library····· 
runtime module 

·······235 

s 
SAVE •..•••....••......•..• -69,189 
SCREEN ••••••••••••••••••• ·216 
segment 
sequential 
SGN 

file 
·89 

• •• ·71 
••••••••••••• 217 

SIN ...........•.......... ·217 

single precision type ········33 
SOUND ••••••••••••••••• '190 
source file ........... ·237 
source list file ·············237 
source program '235 
SPACE$ ••••••••••••••••••••••• 217 



SPC 
special keys ••.••• 
SQR ••••••••••• 

·218 
·9 
·218 

statement 
STOP 
STRING$ 
STR$ 

· . . . . . . . . . . . . -19 
· . . . . . . . . . . . . . . . . 190 
· ................. ·219 
• • • • • • • • • • • • • • • • • 219 

SWAP • ·191 
SYSTEM 
system disk 

••••••• ·191 

TAB 
TAN 

T 

................ 

................ 
ten-key numeric entry pad 
TlME$ 
trace 

·1 

··220 
• ·220 
• ·7 

••• 221 
••• 28 

TRON, TROFF 
truth table 

••• 28,192 

type con version 
type declaration 
typewriter keys 

•••• 44 
•••• 38 

• . 38 
• • 6 

iv 

u 

USR ··························94,222 
USR user defined function •••• 50 

VAL 
variable 
VARPTR 
volume copy 

WAIT 
WHILE ••• WEND 
WIDTH 
WRITE 
WRITE# 

v 

w 

••••• 223 
•• ·33 

•••• 223 
•••••••••••• 3 

............... . 192 

x 

•••••••• 193 
..... .. 194 

•• 195 
•• 196 

XOR ....................... . 45 

( 


	Preface
	Contents
	Chapter I - General Information about GW-BASIC
	Chapter II - GW-BASIC Commands and Statements
	Chapter III - GW-BASIC Functions and Variables



